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INTRODUCTION

The work under this grant on plasma presheaths, which form a transition region be-
tween the collisionless electrode sheaths and the plasma, is directed toward the problems
of the Thermionic Energy Convertor (TEC). Figure 1 shows a schematic of a TEC in a
reactor core for space power applications and the basic physics. Cesium is put the gap
between the emitter and collector for two purposes: first, to ionize and neutralize the
space charge so that a useful electron current density can pass (10 - 100 ampﬁ/square
cm), and second io reduce the eiectrode work functions by adsorption of cesium. Of the
plasma physics of the the cesium filled gap of the TEC, the plasma-electrode interactions
are the most significant part because these regions form boundary conditions which con-
trol the plasma density and temperatures of the entire gap. Thus the research under this
grant has been directed toward the study of collisional presheaths which form the layer
adjacent to an electrode on the order of one ion mean free path thick. However, the re-
search pursued under this grant is not limited in applicabilty to TECs but is of interest
to plasma-surface interactions in general. Other applications include electric propulsion
where electrode erosion is a problem and not fully understood and more generally any
plasma-surface interaction.

This report includes the asymptotic presheath theory developed, and is preceded by the
basic theory of the Thermionic Energy Convertor (TEC) and is followed by the application
of the theory to a time dependent model of the TEC in the program called TEC. As shown
in the TEC results, the agreement with experiment is good except in the low current regime

of the TEC where an unexplained disagre: w.-.t remains. This is still a puzzie.




BASIC TEC THEORY

The basic theory of the TEC is set forth in the following paper published under this

grant.
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Effects of Emitter Sheath Ion Reflection and Trapped
Ions on Thermionic Converter Performance Using an

Isothermal Electron Model

GEOFFREY L. MAIN anp S. H. LAM

Abstrect—This paper couples exact collisisaless sheath calculations
oo an issthermal electron model of a thermionic converter. The emitter
sheath structure takes isto account reflected lons, trapped ions, snd
surface ernission ions. It is shown that lessening the net loss of ions at
the emitter ia the ignited mode by these phenomens degrades perfor-
mance. In addition, it is shown that when the emitter returns too many
of the lons, the arc is extingwished because there is insufficient resistive
heating to maintain the necessary piasma electroa tempersture for ion-
izatien. These results suggest that the ignited mode cannot be improved
much. However, noaignited modes in which the eiectron temperature
remsing low, such as the puised mode, do nxt sufler from this adverse
behavior.

1. INTRODUCTION

MITTER sheath phenomena are important in ther-

mionic energy converters because the emitter sheath
forms the emitter boundary condition for the plasma in
the gap by controlling both the ion loss rate and the loss
rate of hot (3000 K) plasma electrons to the emitter. This
paper examines two expected emitter sheath phenomena
and their effects on converter performance: reflection of
ions coming from the plasma by a double emitter sheath,
and jons trapped in the double emitter sheath. The authors
have previously suggested that ion reflection might im-
prove thermionic energy converter performance [1) and
have subsequently shown that ion reflection at the emitter
is likely to degrade the performance in the ignited mode
snd, in addition, that trapped ions in a double emitter
sheath are also likely to degrade performance in the ig-
nited mode [2]). Lundgren (3], {4] has aiso shown this with
simplified ion and electron dynamics. In the present paper
the effects of emitter ion reflection and ion trapping in the
ignited mode are calculated using exact electron and ion
dynamics in the collisionless (except for ion trapping)
sheaths. The electrons entering the sheaths from the
plasma are assumed to have a Maxwellian distribution,
but no assumptions are made about the retuming elec-
trons, and the electron density in the sheath is calculated
exactly. The ions entering the sheaths from the plasma are

Masuscript received October §, 1986, revised December 11, 1986. This
work was supported by the Air Force Office of Scientific Research.

G. L. Main is with the School of Mechanical Engineering. Georgia In-
stitwee of Techaology. Atlania. GA 30332.

S. H. Lam is with the Mechanical and Aerospace Engineering Depan-
ment, Princeton University, Princeton, NJ 08544,

IEEE Log Number 8613329.

not assumed cold, but are given the correct ion tempera-
ture and shifted in velocity according to a generalization
of the Bohm criterion 5], {6]. :

Both ion reflection and trapped ions in the emitter sheath
reduce the normalized (by plasma density) net ion loss
rate to the emitter. Also, both of these phenomena raise
the normalized plasma density adjacent to the emitter. The
higher plasma density at the emitter causes a greater in-
crease in the loss of hot plasma electron energy to the
emitter than the corresponding decrcasc in the loss of jon-
ization energy (carried by the ions) to the emitter. There-
fore, these emitter sheath phenomena increase arc-drop.
Within the limitations of the present isothermul ther-
mionic converter formulation, all three of these phenom-
ena (which become significant at low currents) stecpen the
current-voltage characteristic. At low current densities.
the present theory shows that the collector sheath height
decreases, resulting in a larger electron diffusion velocity
than can be justified for the continuum model used in the
plasma region. The result of lower performance at lower
current is in agreement with experimental studics. At some
current density which depends strongly on the cmitter
sheath conditions, the ignited mode is no longer sclf-sus-
taining and the arc is extinguished.

Fig. 1 is a schematic diagram of the cesium diode con-
verter. The emitter is heated externally to temperature 7;
which is typically 1750 K or higher. and the collector is
cooled to temperature 7 which is typically 900-1100 K.
The gap space d. or converter length, which is typically
0.25 mm, separates the emitter from the collector. The
cesium reservoir, which is sometimes imbedded in the
collector, is kept at temperature T, to maintain the desired
cesium pressure (typically 1 to 2 torr) in the gap. The
electrical load is connected across the emitter and collec-
tor to produce power.

Il. THE IsOTHERMAL ELECTRON FORMULATION

In this section the isothermal thermionic converter for-
mulation is developed. The formulation is similar to that
of Lam [7] but is generalized to eliminate the assumption
of high sheaths which has previously been used to sim-
plify the electron dynamics. Since both low-emitter and
low-collector sheath heights are encountered as a conse-
quence of ion reflection and trapped ions, the assumption

0093-3813/87/0600-0309501.00 © 1987 IEEE
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Fig ). The cesium diode conventer.

of Boltzmann plasma electron distributions at the plasma-
sheath interface must be abandoned. At both the emitter
and collector, the low sheaths retum few plasma elec-
trons, Jeaving the distributions largely one sided. Fur-
thermore., at the emitter sheath emitted electrons must be
taken into account. Thus the ratio of electrons moving
toward the sheath to the total density of electrons at the
sheath edge is not 1 /2, as in the Boltzmann assumption.
In Fig. 2 we define the potentials in the converter. All
of the potentials are nondimensionalized by emitter tem-

perature as follows:
x = 92

kT (n

where

Y nondimensional potential.
¢ potential,

¢ clectron charge,

& Boltzmann constant. and
T: emitter temperature.

We also use the following terminology for various poten-
tials in the converter:

¢, emitter work function.

Sy  back sheath height,

3y, reflective potential.

\+  emitter sheath height,

A\, plasma potential drop.

V, arcdrop,

v+ cullector sheath height.

&,  cotlector work function. and
Vi sonvener output voltage.

Inspection of Fig. 2 immediately yields the following re-
Lations:
Vim Vi = (9 = &) ~ &x (2)
Vi= (xc = x¢) = 8%, (3)

The Richardson current density of electrons from the
emitter is

A (%) = 120 T3(K*) exp (-8).  (4)

The emitted current density which crosses the emitter
sheath potential peak into the converter plasma region is

Je=Jpexp(-4x), Ax>0

Jy=Jp Ax SO. (5)

We also define the net current density through the con-
verter J and the normalized current density

=<

R (6)
We have assumed for convenience that the ion contribu-
tion to net current is negligible because the cesium-ion-
to-electron-mass ratio is enormous. lons will typically
contribute no more than 1 percent of the net current. Elec-
tron temperature is nondimensionalized as

r

= 7

7= T, (7)

where T, is the plasma electron temperature which, in this

section, is constant by the isothermal assumption. Fi-
nally. we have the thermal speeds:

’SkT,
as=_[—
™m
a5 = ’H‘Lf

™m

The isothermal formulation is developed from here in
the same way as the general formulation except that we
take full advantage of the isothermal assumption by look-
ing only at the global conservation equations instead of
the local ones used in the general formulation. We then
assume that the transpont properties. collision frequen-
cies. and the ionization source coefficient are constant
across the converter because of the isothermal assump-
tion. Also. we find only the steady-state solution. We
carry out this development by deriving the global conser-
vation equations for the isothermal case (current. momen-
tum. and electron energy) and then reducing these to a set
of three simultaneous equations in the vaniables , x, and
xc- In some cases the actual calculations are carried out

(8)

(9)
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using different variables when yx, or xc are small or zero.
In the case. for instance. of a single ion-repeiling emitter
sheath we use j because xg is zero. These equations are
nonlinear and solved numerically using a positive definite
Newton's method.

First. we consider conservation of current. The collec-
tor is assumed to emit nothing: therefore. at the plasma-
collector sheath interface we have

_ a,.a,n(l)e_“ /s

2

where «, is the fraction of the total plasma density at the
collector sheath which is moving toward the collector and
n(1) is the total plasma density at the plasma-collector
sheath interface. Because we continue to assume that the
pan of the plusma electron distribution coming into the
collector sheath is Maxwellian, we can write a, as

2 ARYWEJ .
I + 7- S e~ du
x [})

which takes into account the plasma electrons reflected by
the collector sheath. We still assume that the plasma elec-
tron distribution coming into the collector sheath is Max-
wellian and that it docs not have any velocity shift be-
cause the sheath is expected to be electron repelling. In
the limit of a high collector sheath. a, = 1/2 and we
have a fully Boitzmann distribution of electrons at the col-
lector sheath edge. The situation at the emitter is more
complex because the emitted elcctrons must be taken into
account. We have the backscattcred current density Jyg
which is the plasma electron current density moving into
the emitter:

J (10)

(11)

a =

n(O)a,a(, &
- 2—— exp (- T >

where #(0) is the total plasma density at the emitter

sheath-plasma interface and a, is the fraction of total

plasma density at the intertace moving toward the emitter.
Continuity of electron current demands

Jp = Jys + 7

which can be written as
X¢c ~ X
*P ( 14 >>

n(0)aqy c
n(l)a,
This can be rewritten using (3) and (6) as
1

VJ + Ax,, :
o (=)

The quantity ay, can be written as

fo(i-)en(y

(12)

Jos =

(13)

J,;-J(l'# (14)

;= n(0)ay® (13)

e n(l)a,

o, = (16)

where

e

(1.},

kT,

m

Q=

is the electron Mach number at the emitter. This is just
an application of (13).

Electron energy conservation is developed by consid-
ering energy exchange with the emitter and collector and
energy lost to ionization. Power carried into the plasma
by emitted electrons is

kT,

Pk:l’(2+°}'+AX)_q_' (17)

Power retumed to the emitter is

kT,

Pos = (J = J)(2r + &, +Ax)7. (18)

Power flowing into the collector is

kT,

PL‘=J(27+¢}.+VJ+AX)_- (,9)
q

lonization power loss is

kT,

Pmns',um V/i_ (20)
q

where J,.,, is the total ion current into both the emitter and
collector, and V is the first ionization energy. Conser-
vation of electron encrgy is

P, = Py + P + P,

which can be reduced to

(21)

r=1 =4V, =LV, (22)
where j, = J.a/Js. In the ignited mode 7 is generally
about 2(7, = 1750 K and 7, = 3000 K). conscquently
the arc-drop V, is acgative. In other words, the high
plasma electron temperature is gencrated by resistance
heating.

Finally. we consider electron and ion momenium. From
electron momentum conscrvation, we find the potential
drop in the plasma region. By adding the electron and ion
momentum equations as in the gencral case, we find our
diffusion equation and boundary conditions to which the
sheaths contribute flux terms. When we introduce the ion-
ization source term into this. we have the complete for-
mulation. Electron momentum conservation is

0= _dp. _ dy  a.mnu,

dx " ax N,

where A, is electron mean-free path. Using p. = nkT_ and
J = gnu,, we can rearrange (23) into

(23)

LY (P ﬂ)
J e (kr'dx + nq ) (24)

4
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This can be turther reduced by dividing by J, and using
§ = v /d where d is the conventer gap thickness:

- :)\ I (dj (lx>
J d Jom \TdE " "k

tntegration of this equation from the emitter sheath inter-
face e the collector sheath interface yields

(25)

Ay, =7in (:—:-:-(—‘)—;) + jR (26)
where
4 d ' "
R*;:J-Simlf (27)

The quantity R is the normalized plasma resistance.
The ion and clectron momentum equations can be writ-
wn

dn &N muua, ]
i Y (28a)
dn &Y Mnu a,
T, — —— b
7. - " A (28b)
where A, is ion mean-free path and «, is ion thermal speed:
- 84T,
4, PYTE
Addition of (28a) and (28d) yiclds
(KT, + "T;)gg = -(%n,. + "i'f-’u,) n o (29)

which is ambipolar diffusion. Equation (29) is differen-
tiated 10 become

dn Lum o
(AT, + LT,,) — T T ()
M I
"“T =) = (30)

We ansume recombination is aegligible and the ionization
SOUTCE torm oy,

d d
- Bt 3
J.l'(“'") -d.r(“'") = Sn. {31)
Using (31) in (30} yiclds
d°n am aM
E}* (T+ A, )9(/ n =0 (32)

Eqguatiom (293 taken at the boundaries of the plasma at
the emitter and codlectoe sheath interfaces) forms the
plasma boundary conditions

dn
(II_E')” = gy

((In) = dn,

k}
\“s/l (.‘)

-
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vhere

-d a,m aM
By = ——— Uyt T uy

d a.m aM
B8, -m(—)\‘f“u*' n N.|>- (34)
Equation (32) is written as
1
‘I—£f+,1(f)n=o (38)
where
v am aM
: =S| —— + == 3
A (1) IS<)" + )") (36)

where A( 1) is the ionization coethicient and is found from
consideration of ionization kinctics of the cestum accord-
ing to Lawless [8]. lts solution for n is

n(¢) = Bsin (At + C)

where B and Care constants of inegration and 4 = A(r1).
The quantities 8, and 8,. which are the boundary condi-
tions for (37). can be written as functions of 7. x5, x.
and Ax.:

(37)

By = Bulr. x4 A¢-

B = Bi(7. xs. . Ox.). (38)
When there is no reflection. 8, and 8, are both large. i.e.:

weoff) snoff)

Significant reflection on the emitter side reduces 8, and 1t
may indced attain negative values for suthciently strong
reflection.

The density equation (38) with the boundary conditions
Buand 8, is a linear ¢igenvalue problem: its solution yiclds
A and C as functions of 8, and 3,. The calculated results
are shown in Fig. 3. Since A(7) is a fuaction ot 7 from
the ionization kinctics, the value of 7 is thus determined
by a function of 8, and 3,. The plasma resistance R also
can be expressed in terms of functions of 8, and 3, through
A and C using 27):

v

(.4 + C)
tan

The sheath results which provide j. Q. 8a. and &,. com-
plcte the isothermal tormutation. The sheath theory used
15 an exact solution to the Poisson eguation and collision-
less Boltzmann equation for warm plasma ion distribution
with a 10 percent of Bohm speed cutoff velocity to ap-
proximate the cffect of the collisional presheath {6]. The
results are summarnized below. The quantities 8,. 3,. Q.
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and j are found from the sheath calculations as functions
of 7. x5. X¢.- 4nd Ax.. 1.e.:

g, = Bn(f- Xs+ X AX\)
By = B8,(7. xs. xc. 8x.)
Q = Q(r. x;. xc- 8x.)

J =1 x xee Ax.).
From the eigenvalue problem tor the plasma density we
then find ‘
A(r) = A(Bu. B)). (40)
From the continuity equation for current we find

_ -l <sin(A+C))
Xc < Xt Tin _sin(C)

+rlng-'+rln<}— l) (41)

Qay

and from the electron momentum equation we tind
sin (A + C))
sin (C)

Z(T—l)_l;,y' (42)
) "

These three previous equations determine y,. x,. and r
when Ay, is given. This set of eguations is vahid tor ll
S\, Evenoan the case ot Ay, < O when there s no relec-
tion. the caiculations ditfer from previous isothermal cal-
culations because the Boltzmann assumption on the elec-
trons is pt used as indicated by the presence of a, and
°|.

lr‘X;"fh\(

+ jR +

Ul. Catcutated ResuLts For lON REFLECTION AND
TrarreED JONS

In this section we develop isothermal solutions for the

thermionic converter with the emitter sheath phenomena

[ e

TR

TABLE |
ISOTHERMAL SOLLUTION CONDITIONS

CASE CASE 2

Tc = 1730 K Te = 1750 K
T =750R T-=750 R
Pes = 1 torT Pes = 1 torr
d= 10 mil d = 10 nul
ég =212V ég = 267 ¢V
¢ =160V o~ = 1.60 eV
Jp = 20 amp/em? Jp = 7.57amp/em®

Jove = 1.80x10°% amp/em® Jove ® 2.10x1077 ampicm?®

of ion reflection. trapped ions. and surfuce emission ions
included. Emitter sheath effects on thermionic convener
performance can be divided into twe categones: 1)
changes in net ion flux rate into the sheath which affect
plasma density directly: and 2) changes in sheath poten-
tial distribution which affect the exchange of “‘hot’™”
plasma electrons for “"cold’" emitter ions directly. A de-
creased influx of ions into the sheath. which occurs for all
three emitter sheath phenomena. increases ihe plasma
density at the neutral plasma emitter sheath interface.
Theoretical intuition suggests that an increased plasma
density at the emitter would benefit performance by re-
ducing resistance through the plasma and therefore reduc-
ing arc-drop. However, this is not the case. While the
plasma density at the emitter increases slightly. plasma
density at the collector decreases. Consequently. total re-
sistance increases.

All three of these phenomena increase in significance
as net current densit through the converter 1» reduced.
Each of these reduces the net ion loss rate 1o the emitter
and consequently increases arc-drop (therefore. degrading
petformance ut low current densities). This increase in
arc-drop is in agreement with the same tendency in the
experimental results. However. the experimental results
also show a plateau (of low arc-drop) at low current den-
sity. This plateau occurs at a current density correspond-
ing to significant surface ion emission and is therefore
thought to occur as surface emission replaces volume ion-
17abon as the dominant source of plasma 1ons. Untortu-
natcly. the theoretical calculations cannot be carried into
this region because the collisionless collector sheata
matching (10 the neutral plasma) fails.

To provide a realistic framework for presenting the re-
sults. we consider the convener conditions shown as case
1 in Table 1. Case 2 is shown because it has the largest
surface emission of any typical thermionic converter op-
erating condition (because the work function is high and
the temperature is also high). Instead of presenting case
2 separately, we demonstrate the effects of surface emis-

)C
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sion in case 1 ' ; increasing the surface emission by a
factor of 100 thereby bringing it up to the level in case 2.
The net current density at which surface emission be-
comes significant can be estimated by multiplying J, . by
the square root of the ion to electron mass ratio (approx-
imately 500). In case 1. this means that surface emission
becomes significant at J = 0.01 A/cm’ while in case 2
significant surface emission begins at / = 1.0 A/cm’.

1V. EFrFects oF JOoN RFFLECTION

In this section we discuss the isothermal results for case
1 with ion reflection. but without trapped ions and with
the small amount of surface emission ions of case |. Fig.
4 is the CV diagram for this case.

The dotted line extending upward from point A is the
single electron-icpelling emitter sheath solution. How-
ever. we have not taken recombination or the Schottky
effect into account in this isothermal formulation which
are expected to become important at current densities near
Ja. The interest of this paper begins at point A, where the
single sheath doubles over. Between points 4 and B,
where the back sheath height Ax is less than the sheath
height x;. the emitter sheath is nonreflecting. In this re-
gion the sheath heights xg and x¢ remain constant while
the plasma density is proportional to net current J (the
normalized plasma density #c/J is constant). Only the
back sheath height Ax changes and the CV curve in this
region is Boltzmann (the arc-drop is consiant). Beginning
at point B and continuing to point C. the duuble emitter
sheath reflects plasma ions because the back sheath is
larger than the front sheath: in other words, the reflective
potential Ax, = Ax — xg is positive. The result is that
net ion loss rate into the sheath & decreases and that arc-
drop increases. The quantity & is defined as the mean ion
velocity into the sheath normalized by the Bohm speed.

vkT,/M. The dotted curve BD is the same double sheath
except that it assumes no ions are reflected; therefore, @ is
constant and arc-drop is constant. The two curves BC and
BD are almost indistinguishable bccause the increase in
arc-drop ts small until the net current density is extremely
small. The reason for this is that the shift speed is ap-
proximately u, = 2. and. therefore. a large increase in
reflective potential is required to change % significantly
(the half-reflection point is Ax, = 4.0 or approximately
J = Jpexp (—=4) = 0.4 Afem’). The shift speed u, is
defined as the velocity at the peak of the incoming ion
distnibution again normalized by the Bohm speed.

The curve EF is the single electron-repelling emitter
sheath case. It is the limiting case for large amounts of
trapped ions in which the double sheath peak has been
completely suppressed by the trapped ions. For this case.
the emitter sheath solutions gives u, = 0°. This curve is
not topologically connected to the curve ABC:; it will be
shown in Section V that trapped ions move ABC toward
the single ion-repelling sheath case. The curve is much
steeper (a faster increase in arc-drop) in this case because
¥, = 0 (the half-point in ion reflection is approximately J

il
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= 8 A/cm®). Curve EG is the single ion-repelling case
assuming no reflection and is therefore a Boltzmann line
with constant arc-drop.

At points F and C the solutions fail at the collector. The
explanation for this failure is best given by examining
Figs. 5-8.

Fig. 5 is the normalized plasma density through the
converter gap. The highest curve with no reflection Ax,
= 0 has the largest plasma density at the collector but the
lowest plasma density at the emitter. lon reflection. which
decreases the ion loss rate to the emitter, raises the plasma
density at the emitter but lowers the plasma density at the
collector. The lower plasma density at the collector forces
a smaller collector sheath heignt to pass the net current
density. This can be seen from (10). Fig. 6 is the potential
through the convener under the same reflection conditions
as in Fig. 5. In Fig. 6 the first two spaces on the left make
up the double emitter sheath, and the last space on the
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Fig. 7. Collector sheath failure.

right is the collector sheath. The region between the two
sheaths is the neutral plasma region. In the no-reflection
Case. it can be seen that the potential has a pronounced
well in the middle. This is the result of the large plasma
densit; in the middle. As reflection increases, this well
d.sappears on the collector side of the plasma because re-
sistive drop *~re (due *~ low plasma density) increases
W the degrre .t it is greater than the ambipolar rise (due
0 decrs.- i . Jensity toward the collector). Simulta-
seousiy *v... ..usma potential gradient at the collector be-
coming i.egativ+. -1e collector sheath goes toward zero
height. Fig.  _...ws the critical collector sheath quan-
tities as the coilector sheath failure occurs. Collector
sheath height x goes toward zero, the shift speed u,. goes

s
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Fig. 8. Emitner sheath during reflection.

toward negative infinity, and the ion loss rate to the col-
lector &, is driven to zero. The two preceding quantities
L. and u, are defined at the collecter sheath as 7 and «,
were at the emitter sheath. Fig. 8 shows the changes in
the emitter sheath height, ion shift speed and ion loss rate.
When the collector sheath failure occurs, the ion loss rate
to the collector is zero (i, = 0) and the corresponding
plasma ion distribution at the collector is bunched at zero
velocity (u,, = —co). While the mathematics hold self-
consistantly until 4. = O, the physics is clearly poor at
this point because 4, = 0 demands that the plasma ions at
the collector have zero energy (zero temperature and zero
mean velocity). An estimate of when the physics becomes
poor is u,. = 0. At this point the net ion loss rate is close
to the thermal speed. A second physical difficulty that oc-
curs with collector sheath failure is that the electron Mach
number there Q. (from (10)) becomes

0 = J=

because the collector sheath height approaches zero (ac-
tually about 0.001 ). In the present continuum formulation
of the plasma region, it was assumed in (13) that Q, is
small so that the electron momentum term u,du, /dx can
be neglected.

One could take the solution below the collector sheath
failure point if &, could attain negative values or if Q,
could attain values larger than V2 /x. There is no physical
basis for assuming that 7, can become negative since the
collector emits nothing. However, there_is a physical ba-
sis for allowing Q, 1o be larger than v2/x (an electron
distribution shift) as can be seen in Fig. 6: the potential
drop nearing the collector becomes progressively more
electron accelerating as the collector sheath fails, and,
therefore, the electron distribution should be shifted as
the ion distribution is in an electron-repelling sheath.
However, this would clearly invalidate the assumption
that the electron momentum term is negligible. Therefore,
the momentum term must be added to explore further in
this direction and this has not been done because of the
resulting complexity in the equations.
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Comparison of Fig. 7 to Fig. 8 at the collector sheath
failure point (Ax, = 2.5, u. = 0) shows that the ion loss
rate to the emitter is positive. At this point the plasma is
still ignited and generating ions as can be seen from Figs.
9 and 10. The ionization coefficient A has dropped by 50
percent, but the plasma electron temperature has dropped
by only S percent. Finally, we note in Fig. 11 that the
normalized plasma resistance R has risen by almost 100
percent. This is responsible for the increase in arc-drop
and the decrease in performance. Plasma resistance in-
creases in response to reflection because the loss of plasma
electron energy to the emitter is more imponant than the
loss of ionization energy to the emitter. lon reflection at
the emitter increases the normalized plasma density there,
and consequently increases the normaliz=d loss of plasma
electroa energy there. The basis of this can be seen from
conservation of electron energy (22):
The ion energy loss term is generally small compared to
the electron energy loss term:

g ¥
Bl 1% | o0m). (4a)
ijVJ IV,
Therefore, we take the electron energy equation as
r=1-|jV,. (48)

Since 7 is nearly constant (because of the ionization ki-
netics), the product jV, is nearly constant. Ion reflection
decreases j (because the normalized plasma density in-
creases) and therefore increases arc-drop V, (makes V, a
more negative aumber).

If the equations are reformulated in such a way as to be
valid past the collector sheath failure point, then we can
eventually expect to see a decrease in arc-drop and & low-
current plateau as the electron temperature approaches |
(the ignited plasma is extinguished and the ionization
source is surface emission). This can be seen from (43).
However, as we see, the collector failure occurs before 7
bas dropped more than § percent. Consequently, we do
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not see any plateau or decrease in arc-drop as net _urrent
density is decreased in the present calculations.

V. EFrecTs oF TrarPeD IONs

Fig. 12 shows the effect of trapped ions on the CV * ar-
acteristics. In this section the trapped ion distributio.. is
assumed to have the temperature of plasma ion distrivu-
tion, and 100-percent trapped ions ( f, = 1.0) is defincd
to complete the ion distribution at the double emitter
sheath peak such that one has a Maxwellian distribution
there. Based on physical reasoning about the trapping
mechanism, one expects on the order of 10. Also, some
trapping calculations have been done for approximate
sheath formulations (9], (10] which support this.

Curve AHIJ is the CV chanacteristic for f, = 0.10. At
point A there cannot be any trapped ions since the back
sheath height Ax is zero. Therefore, the trapped CV
merges into the nontrapped curve there. The actual amount
of trapped ions on the f,, = 0.10 curve increases from zero
at point 4 to the full 10 percent of a thermal distribution
at point H where the back sheath height Ay is equal to the
sheath height xg. The shift speed increases on AH from
1.95 to 3.00. This corresponds to what is seen in Fig. 12
where Ax < xg¢.
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The rise in shift speed has been limited to 3.00. This
limit is placed on the shift speed because a sheath with
beight of about 1.0 should not have a presheath region
capable of shifting the entire distribution so far. In fact,
limiting the shift speed is equivalent to increasing the cut-
off speed for the ion distribution function.

The arc-drop decreases as a result of the increase in u,
and the consequent increase in the net ion loss rate to the
emitter. A “*hump™* can be seen on AH where the shift
speed hits 3.00. The arc-drop is lowest on this ‘‘hump"’
because the shift speed is at its maximum of 3.00. Be-
tween points M and / the back sheath height remains equal
o the sheath height. Ax = xz = x, = 0. On this segment.
u, decreases to 1.25, therefore increasing arc-drop.

From point / to point J, the shift speed remains constant
at 1.25 and the ion loss rate decreases because of reflec-
tion. The other trapped cases f,, = 0.2, 0.3, and 0.4 have
oot been connected because they hit the 3.00 maximum
shift speed much sooner than in the f;, = 0.1 case.

Point J is the collector sheath failure point. Each of the
Jf» = 0.2, 0.3, and 0.4 curves begins at Ax, = 0 and ends
at the collector sheath failure point. It should be noted that
each of the trapped ion curves fails at a higher current
than the last because the shift speed is lower.

V1. ErrecTs of EMITTER SURFACE EMISSION

Fig. 12 shows the effect of surface emission on the f,
= (.10 curve. surface emission is added by multiplying
the actual small amount of surface emission in case | by
a factor of 100. This brings the surfuce emission up to the
level im case 2. making it significant at J = 1.0 A/cm".
It can be seen that surface emission increases arc-drop: it
does 30 in exactly the same way as reflection or trapped
ions do—it decreases the net loss rate of ions to the
emitter.

VII. Compartson witT EXPERIMENTAL RESULTS AND
ConcLUSIONS

Fig. 13 superimposes the isothermal results of Fig. 12
on the experimental results for a cesium reservoir tem-
perature of 551 K which produces a 1-torr neutral cesium
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Fig. 13. Isothermal and expenimental CV diagrams

pressure. The experimental results are from {11]. The
point of this comparison is that the steepness of the CV
chzracteristic in the experimental converters can be ex-
plained by a decreasing ion loss rate to the emitter. We
have shown that all three of the expected emitter sheath
phenomena decrease the ion loss rate to the emitter. We
cannot calculate the amount of trapped ions in a collision-
less sheath without knowledge of the collisional pro-
cesses. However, the experimental CV suggesis that if the
amount of trapped ions ( f;,) increases from O percent at
J = 14 A/cm’ (the double sheath formation point) to 10
percent at J = 2 A/cm’. then the steepness could result
from trapped ions reducing the ion loss rate to the emitter.
Since these percentages are based on a thermal distribu-
tion- of ions. they seem physically reasonable. Unfortu-
nately. the collector sheath failure prevents us from going
to the point in the calculations where r drops enough to
make surface emission the source of ions.

The experimental curve is nearly a constant 0.05 V be-
low the isothermal result ( f,, = 0.10) except at high cur-
rent densities and at the '*hump.’" Comparison of the
curves at high current density is not valid since neither
the Schottky effect nor recombination has been included.
The Schottky effect is important above 12 A/cm’ in this
case because the emitter sheath is singie clectron repel-
ling (to the plasma) and therefore puts a strong clectric
field against the emitter with the appropriate sign. Recom-
bination is also potentially important because the plasma
density scales with current density. and at high current
densities the plasma density in the middle of the converter
approaches the Saha density. The 0.05-V difference may
or may not be explained by a discrepency in the assumed
collector work function. At 750 K the collector emits es-
sentially nothing and therefore any change in the collector
work function directly affects output voliage. If the col-
lector work function were in fact 1.6S instead of 1.60 V,
then the isothermal result would lie nearly on top of the

14
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experimental result. We have not adjusted the assumed
collector work function so as to illustrate the importance
of it and therefore the importance of the surface physics
of the adsorbed cesium [ayer. The **hump’’ should not be
taken as an expected experimental result since it resuits
from the interaction of the trapped ions with the plasma-
emitter sheath interface. Instead it should be taken as a
second reason (in addition to the cutoff of the ion distri-
bution) for further study of the matching region between
the collisionless sheath and the neutral plasma.
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ASYMPTOTIC SHEATH THEORY

The Asymptotic Sheath Theory developed under this grant is set forth in the following
paper.
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Few exact solutions for collisional presheaths exist because of the difficulty of simultaneously
satisfying both the collisional Boltzmann equation and the Poisson equation. The exact
solutions that do exist are for very specialized ccllision terms such as constant cross-section
charge exchange with cold neutrals. The present paper presents an asymptotic method which is
applicable to a variety of collision terms and is applied in particular to constant collision
frequency charge exchange with noncold neutrals. Constant collision frequency and constant
cross-section collision with cold neutral results are aiso presented. The first-order terms for the
presheath potential rise and ion distribution functions are calculated and it is shown that
second- and higher-order terms can be calculated using a multiexponential expansion for
presheath potential rise. The first-order cold neutral constant cross-section results correspond
well to the exact solution. The calculated presheath potential rises are of the order expected
from the Bohm criterion, and in some of the specialized cold neutral cases, exactly 47T, /2. The
presheath potential rise is reduced by a neutral plasma potential gradient which accelerates )
ions toward the presheath. In all cases the collisional presheath is asymptotically matched to

both the neutral plasma and the collisionless sheath.

L INTRODUCTION

The majority of plasma-surface interaction work
matches a neutral plasma to a collisionless sheath without
detailed consideration of a collisional presheath. However,
the collisional presheath structure is of great interest. Sheath
theory, beginning with Bohm,' tends to assume that the plas-
ma ion distribution is cold so that a minimum presheath
potential rise may be calculated, which makes the collision-
less sheath self-consistent. Harrison and Thompson? genera-
lize the Bohm criterion to noncold ion distributions; how-
ever, the result is sensitive to the density of the low energy
tail of the ion distribution, which in turn is strongly affected
by the collisional presheath. And, a second difficuity in the
absence of a collisional presheath is that the collisionless
sheath and the surface beyond it may return no ions or a

wonthermal distribution of ions which the collisional pre- -

shesth must match to the neutral plasma region.

Some exact solutions exist for presheaths; notable is the
work of Ecker and Kanne® and Riemann,* who derive exact
solutions for collision terms based on charge exchange with
cold neutrals and Emmert et al.,* who derive an exact colli-
sionless solution in which there is an ionization source. In
the present paper an asymptotically correct collisional pre-
sheath theory is developed which can be applied to a less
restrictive range of collision terms. Potential in the pre-
sheath is expanded as a multiexponential series and the dis-
tribution functions are expanded in terms of presheath po-
tential rise. First-order approximations are calculated for
both constant collision frequency and constant cross-section
charge exchange collisions.

M. FIRST-ORDER ASYMPTOTIC POTENTIAL
FORMULATION

In this section it is assumed that the potential in the
collisional presheath is of the form
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where U, = ax is the assumed linear potential in the neutral
plasma and AU = ¢ is the additional potential rise in the
collisional presheath, as shown in Fig. 1. In this paper the
convention used is that U =g¢4¢, where ¢ is the electron
charge and ¢ is potential in electron volts so that U has units
of energy. In addition, potential is defined in the reverse of
the usual sign convention so that increasing potential repels
electrons. With these conventions, the Boitzmann equation
can be written as

In Eq. (2) and those following, the + denotes the sign of
the charged species in question; the upper sign refers to posi-
tively charged ions and the lower sign to electrons. The
Boltzmann equation is expressed in terms of A U, which will
be the expansion variable in the presheath:

L1 ?I,(_a[
8oL+ 2 BaU+a) L az),‘ (3)

The distribution function is then expanded as

S=fo(v) + AU (v) + 8Y5(0) + -, 4)
30 that the derivatives are
A 2
m-f.(v) +20Uf () + 38U (v) + (s)
and
I )4 avh 28 gy 4 ee
% av(”)+ Uav(v)+AU av(v)+ (6)

Substitution of (5) and (6) into the Boltzmann equation (3)
yields the terms
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B4 a g d
AU: #Bf,(v) £ = a{:’(v);t a{"(v) [(a{)] (7b)
- a g 4
sv: 20+ 2Ly 4 2% ) [(a{) .. (76)
- 2802 L 0-((0)
sv: m,+ L Lt 2 2 .. (74)
The quantity 8, reprsentmg the prshuth pownml rise, is determined from the Poisson equation
._Ugdq’ ) _ﬁ(v,AU)dv-J- f,(v,AU)du), (8)

where g is the electron charge. It is assumed that the ions are singly ionized for simplicity. The Poisson equation (8) is
expanded as

BAU= hrq’[ ) fu(w)dy ~ I. fu (v)dv)AU + ) Ja(0)dv — J’- Sfa (v)dv)AUz + ]. 9)
wherechargeuumlit;:t AU:Ohas;li:nimted thetermsco;t:iningf,, andj-';,-:' .

nosr fo(v)do= f' fo(0)db.
The qmm-y:no isthe ncutn_l ;lasma density of the asymptotic presheath, not of the neutral plasma.

. FIRST-ORDER SOLUTION WITH A CONSTANT COLLISION FREQUENCY CHARGE EXCHANGE COLLISION TERM
The constant collision frequency charge exchange collision term is modeled as

(%)‘ =;:—.-(L(v) f:.ﬁ(u)du -fi(v) f:..ﬁ.(u)du) ' (10)

wheref, (v) is the seutral distribution and r is the collision time. Previous work has assumed cold neutrals and results in an in-
tegral equation which is solvable only for constant collision cross section.*

A. Zero plasma potential gradient (a=0)
In chis case Egs. (7) become

L o-—ﬂ-'..—(ﬂ.(v) j’ " fewrdi=fow [ firdu),

aU: nef;.(n-t»— —-(f(v) f o0y = f, () f f.(u)du)

lwﬁf.(v)-i—ﬂ f“"" )-;l.—(.ﬂ.(n)f:.f..(u)du—f.-.(v)f:.L(u)du).

Under the sssumption that the neutral distribution is Maxwellian 7, (v) = #,Vm/27kT exp( — m?/2kT), the solution to
(s

(11)

fo -Cfn(l’)v
Ja(0) = (VKT fs (v), (12)
Jfu(v) = (L/RKT)Yf, o _, (V).
Thus .
£ (DAU) = Ce'4YADf (1), (13)

which is the expected result. In this case the mean ion velocity is zero throughout the collisional presheath since charge
exchange collisions conserve ions and the mean ion velocity in the neutral plasma is zero. Thus, if a = 0, constant collision
frequency charge exchange collisions do not shift the ion distribution upward in velocity. This presheath can be matched toa
collisionless sheath only if the collisionless sheath returns all the ions entering it from the collisicnal presheath.

With electron density assumed to follow
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(= AUZKT,)
’

r(AU) =nye
the Poisson equation (9) yields, to first order,
B =4ngn (1/kT + 1/KT),),

which is the length scale of the Debye length. Thus for @ = 0 the collisional presheath is not distinct from the collisionless
sheath since there is no separate collisional presheath length scale.

B. Nonzero p!asma potential gradient (a 30)

Under this condition there is a net flux of ions from the plasma into the sheath, which allows the construction of a
collisional presheath that accelerates the ions and depopulates the ion distribution of returning ions. Thus the collisional
presheath may be correctly matched to the collisionless sheath which returns noions. In this case (7a) and (7b) can be written
s

f% (@) = ;,’,TU. WIno ~ nfo(0) ], , (142)
h0) *%%*%%"(vw:,‘,—,u.wn. - nfiw)]. : (140)

The solution to Eqs (14) are

-_my mu
- ’ | - o=+ d (15
So(v) "oe"P SokT + ar) u )
-E”_"’i_ﬂ [ 5”"‘ "l’" "2 _B ]d c] 16
fitv) exp( l aﬂ’kT - av(") u+C|, (16)

where

..,=J" foo)dy (7
and -

n,-J“ £i(0)dv. (18)

The constant of integration in (15) has been set so that f;, goes to zero at — oo; f,, goes to zero at o« regardless of the
constant of integration. Equation (17) is immediately satisfied by (15). The constant of integration C in (16) must be set so
that (18), which represents seif-consistency, is satisfied. It can be seen from ( 16) that £, goesto zeroat — oo and o regardless
of the constant C. From (18), then

ceai-[ o -252-2) [ «w )2 [ en{ - 5]
V)] (o2 ) [ ol ]

’ . 19
X ex 1_2 (19)
The exponential sheath rise £ is determined from the Poisson equation under the simplifying assumption that

--f f,(v)dv-noexp( :;,j) (20)

One might expect that the approximation should be n, = n, exp( — U /kT, ); however, this cannot be true in the asymptotic
presheath because n, must approach n, as U approaches negative infinity. With (20) the Poisson equation (9) to first order
becomes

B = 4rgi(n, +n/kT,). (21)

Since the ion density is only calculated to first order, the same will be done for the electron density in (20).
To obtain a particular solution it is assumed here that the collisionless sheath to which the collisional presheath is joined
at AU = AU* returns no ions. In particular,

f S AU®)dy =0, (22)
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r ﬁ,(v)dv-i-AU‘f [ilv)dv=0 (23)
i —- -

f of(v,AU*)dy =0, (24)
o -

.r vfo(v)dv+AU‘f of,(v)dv = 0. (25)

Because the approximation is only first order, it is not possible to impose the condition that f(v) is uniformly zero for returning
jons. Equations (23) and (25) represent zero returning ion density and zero returning ion flux. When higher-order terms are
included, the conditions of zero returning ion momentum flux, zero returning ion energy flux, etc., can be applied in succes-
sion. Equations (21), (23), and (25) aresolved for n,, 8, and AU *, with all other quantities assumed constant. Equatxon 2n
immediately satisfies the Bohm criterion at AU = AU * for the first-order approximation

B, +n/kT,>0. (26)
The Poisson equation (21) can be written as ' )

B2AL =1+ kT,(n,/n,), @n
where

lp "}IT,/‘WE No (28)
is the Debye length. It i expected that the length scale of the presheath should be of the order 8 = 1/4,, where 4, is the ion
mean free path. In the circumstance that the Debye length is small compared to the ion mean free path, the product 824} is
small and

R, = —ny/kT,. (29)

The neutral plasma region is matched to the collisional presheath also at AU = AU ®, as shown in Fig. 1, to produce a

three-scale uniform asymptotic solution. In particular, assuming constant collision frequencies, the momentum equations
become

m; r dn du mFT,;
kT, = — —— e 30
( w Jdx " dx T (30)
and
m, rz dn dU m!r'
kT, - —_— o ) —— , 31
( w Jdx = T, Gh
where
colitioriess sream
~fuei,. BU
Tl plasmo /B‘/”’
-~ FIG. 1. Asymptotically correct potential in the collisional presheath.
X
asymoronc
aiuona presream
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n=ng(l = AU/KT,), (32)

]
%' —mb f; ’ (33)
and
U a+pAU". (34)

The quantity nis the plasma density at the matching point AU * and I, and I, are, respectively, the ion and electron net fluxes.
Noadimensionalization results in

A= (ar/m)Nm/2kT, (35)
B=pgkT/a, ‘ (36)
R =TT (37)
o =m/2kT v, (38

where 4 and R, are the parameters and B is a function of 4 and R, . The quantity 4 represents the nondimensional asymptotic
presheath potential gradient, B represents the nondxmensnonal exponential presheath rise, R, is the electron to neutral
temperature ratio, and  is the nondimensional velocity. The distribution functions can then be written as

Floa) = —LW)L__ . exp(— 0/4) J' exp(—s"+£)d§ (39)
Ry m/ZkT - - A
and
Ji(v)
F(oAB) =
' (no/kT, Wm7ZkT
- exp(-Bw’-w/A){"' ( ) _i)[_l _p2
5 0expBg‘ +A Aexp( &%)
ol - e -4) [ _en{-r D)

where

C"[]_ﬁlf .‘ ”P(-Mz-_)r”p(agz"'i 5)d§dw][\/— 43,4’ R
+—f exp( - B = 2) [“exp(Bs7 + £)
SRR Y VI AT L

Thus (23) and (25) become

f Folod)do + 2U°

) F(0A.B)do =0 (42)
and

r vfo(wA)dw+%— oF (0 AB8)dw = 0. (43)

Figure 2 presents the presheath potential rise AU */k7, and the nondimensional exponential rise B as a function of the
sondimensional asymptotic presheath potential gradient 4 for a range of electron to neutral temperature ratios R, . As would
be intuitively expected, the presheath potential rise decreases with increasing 4. Figure 3 presents the ion distribution
functions at the neutral plasma-collisional presheath interface Fo(@), the first-order correction to the distribution function
F,(@), and the resulting distribution function at the collisional presheath—collisionless sheath interface Fo(w) + AU *F,(@).
Although the resulting distribution is not uniformly zero for w <0, its net returning density and flux are zero by (42) and
(43). Itis expected that higher-order corrections to the distribution function and potential with the corresponding application
of higher-order moment conditions of zero returning momentum, energy, etc., will converge the returning distribution
function toward a uniform zero.

In the limit of cold neutrals, the constant collision frequency charge exchange solution is considerably simplified. Equa-
tions (14a) and (14b) become
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FIG. 2. Constant collision frequency
presheath potential rise.
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FI1G. 3. Constant collision frequency ion distni-
butions in the neutral plasma and at the pre-
sheath-shesth boundary.
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such that

C*—=C~ = (m/ar){a, - (B/a)n,]. (48)
Equation (46) immediately satisfies no = (= _ f,(v)dv. No returning ions implies that

¢~ =0 (49)
and

C* = (m/ar)[n, - (B/a)n,] (50)

since f, 08 p <0 is already zero. The final condition is then that n, = (5 ,(v)dv. or

- Bmv’ mv)[n,m Bn, m ﬁno( m )IJ’
= —_—— e | A - Y — ex
" .[ exp( 2a ar/l ar a ar alar/ b p

The spplication of n, = — ny/kT, yields

ararnte i S ] o

]dv (5hH

In this case, AU * is defined by

fl0T)+ AU (0") =0, . (53)
which yields

AUS/KT, = 1/(BKT,/a + 1), (54)
as expected. In the limit of Sar?/2m -0 we have

BkT, /Ja =1 (55)
and

AU*=kT,/2, (56)

which corresponds to the Bohm criterion. Figure 4 presents the variation of B = Sk T, /a, with Sar*/2m for the cold neutral
case. A particular § for the parameters can be conveniently found by drawing a line from the origin, with slope 2mk T, /a?,
s0 that the intersection is the solution. Figure S presents an example cold neutral ion distribution. Examination of the ion
distribution fanction at v = 0 shows that the slope is discontinuous. This is because the neutral source is a delta function at
v = 0. It sppears that the Bohm criterion cannot be satisfied at AU ® because the integral & [/{v)/v*1dv is singular; however,
the use of this integral in the Bohm criterion assumes that the ions accelerated are not replaced. In this case the ions
accelerated from v = O are replaced by ions from the cold neutral distribution which, of course, is & delta function at v = 0.

V. FIRST-ORDER SOLUTION WITH A QUASICONSTANT CROSS-SECTION COLLISION TERM
First-order asymptotic solutions can also be developed for a quasiconstant cross-section collision term

(%)‘ -.U:_L(pmu)lu- uldu -—J‘:.f(v)/,(u)lv - u(du) . (57)

—p—— . -y g r —

FI1G. 4. Constant collision frequency presheath
nise with cold neutrals.
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This collision term is not really constant cross section because it is a one-dimensional representation which does not take into
account average velocities in the other two dimensions. However, this collision term corresponds to that commonly called
constant cross section. The application of this term leads to a set of integro-differential equations which can be at least
spproximately solved, and in the cold neutral case it leads to readily soluble first-order differential equations. The cold neutral
case presented here corresponds to that which can be solved exactly (Riemann*). Unfortunately, though, the exact solution

method is not extensible to noncold neutrals. The cold neutral collision term is

(%) =on,8(v) J-- Ju)|uldu — aftv)n, |v|
and the zero-order Boltzmann equation term (7s) becomes
£ %o (5) = om,80) [ fotwluldu - om vl oo,

m
forwluch the solution is
2 [Jomn, omn,
£o(0) = "“\/;\/ a “p(- za“’z)' v>0,
00 v<C.
The first-order Boltzmann term is

off (v) +£ af"(vl +£—%f-u—’(u) -an,&(v)j filu;|uldu —om, ] £, (),

iorwlndnhesohmonis
exp[ _(ﬁm i v’]{"° ’ ’[exp Bt -—1]+C‘] v>0,
filv) =
up[ m _ 0, )v’](C ) v<0.
2\ a

The jump condition at v = 0 must besaasﬁed in (61):

J' £ () |uldu — --an kil
” a

No returning ions, C = 0, and the application of (63) to (62) yields

C* = —ny(B/aW2/x\Jomn,/a.

The collisional presheath—collisionless sheath boundary AU ® is again

émn,

C*"=C™ =

1007 Prys Fluids, Vol. 30, No. 8, June 1987 Geoftrey L. Main
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which yields
AU/KT, = a/PkT,. (66)
Equation (62) is integrated to
n, =j fito)dv = fofe? (1 - 1 +—Q— (67)
. a on,
and applied to the Poisson equation (8) to produce
2 2 2 /
(ﬁ )-("’?"’0)( L ){-"—5"1 1- [1+-E- +1]. (68)
on, kT, on, a \ an,
Under the assumption that the Debye length is short compared to the ion mean free path,
(47g°n/kT, ) (1/0m, ) > 1,
Eq. (68) results in
B/on, = a/n okT,(2 +a/n,okT,) (69)
and
(70)

AU*/kT, = 1/(2 + a/n,0kT,).
The Bohm criterion is satisfied at AU ® to the first order by virtue of (68). And interestingly, the presheath potential rise for
a = 0 is exactly that required by the cold ion Bohm criterion. Figure 6 presents the results for cold neutrals with a/n, ok T,

= 1. From the ion distribution at AU ®, the mean ion velocity into the sheath can be determined tobe U = l.O@/FT,/m, .

while the exact solution of Riemann gives i = 1.27,/kT,/m,; thus the first-order asymptotic result appears close.

V. CONCLUSIONS

It has been shown that approximate collisional presheath solutions can be obtained for a variety of collision terms. In
particular the constant collision frequency case has been solved approximately, whereas previous attempts at exact solutions
have found this case intractable. In addition, it has been shown that higher-order corrections can be made a regular and
tractable fashion. Also the return of ions from the collisionless sheath can be treated.

ACKNOWLEDGMENTS
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APPENDIX: MULTIEXPONENTIAL FORMULATION
In the previous sections we have caiculated only the first-order terms in the ion distribution and presheath potential rise.
Also, we have implicitly made the same first-order approximation for electrons:
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n, =ng(l — AU/KT,).

(A1)

A complete multiexponential expansion can also be constructed that correctly calculates the second- and higher-order terms.

Potential in the presheath is
U=Uy+ AU +a, AU +a,AU? + -+, (A2)
where Uy = ax and AU = exp(Fx). Thus
%xgsa+ﬁAU+2ﬂa,AU’+JBaAU’+ (A3)
and
dU  a+BAU + 28a,AU? + 3Ba,AU> +
which transforms the Boltzmann equation
duf of aAU 1 ) (af)
&\'5a0" v T m ') =\ (A%)
into
U_i —_ 2 f N =(af) ,
ofA aw(")i (@ +BAU + 28a,AU? + )av(v > . (A6)
or
Zo=[F)],
1: 2 %o
im —=(v) = r (AT7a)
AU vEf,(v)iﬂ ‘%(v): = af‘( )= [(af)] ) (ATb)
m & dt/clay
AU Zvﬁf(v):twa’ aﬁ’(v):tﬁ Y ):“ af’( )= [(3f)] , (ATc)
dv or av?
AU moff,(v) 4 Yoy 4 20 WPy Oy Ly £ 2 -=[(_)] .
O e A N E T AW TRy 8v()im6v(v) 3t Jedau-
(A7d)
The Poisson equation (8) becomes )

B*AU+ (28)%a,AU% + (38)%a,AU® +
= W[AUU Jo (v)dv - f Ja (v)dv)

+AU’U- Sa (u)dv—f"= f,z(v)dv) + ]

(A8)
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THE TEC PROGRAM RESULTS

The TEC program results shown here incorporate the asymptotic presheath work and
give good agreement except at low current density. This disagreement is still not under-

stood.
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TEC INITIAL DATA SUMMARY

PHYSICAL OPERATING CONDITIONS-==--

EMITTER TEMPERATURE (TE)= 1700.0 KELVIN
COLLECTOR TEMPERATURE (TC) = 773.0 KELVIN
EMITTER WORK FUNCTION (EWF)= 2.642 EV

COLLECTOR WORK FUNCTION (CWF)= 1.630 EV
CONVERTOR PRESSURE (PN) = 1.541 TORR
GAP THICKNESS (D)= 0.254 MM
OPERATING CURRENT (J)= 2.000 AMPS/CM~2

TEC FUNCTION SETTINGS-=---

DIAGNOSTIC LEVEL (CHKDOT)= 1
RESTART SEQUENCE (OFILE)= 0
POINT DENSITY (N)= 11

1.50

. PHYSICAL PARAMETERS EVALUATED-----

_ RICHARDSON CURRENT (JRIC)= 0.51E+01 AMPS/CM*2

i REFERENCE DENSITY (NR)= 0.10E+15 1/CM"3
CHARACTERISTIC TIME (TCHAR)= 0.0208 SECS*E-06

. NONDIM CURRENT (I)= 0.0196

- NONDIM EMISSION (ENR) = 0.008 (NRIC/NR)

- KNUDSEN NUMBER (KN) = 0.0791

- SQRT (MASS RATIO) (SMR) = 0.0020

1 MEAN FREE PATH RATIO (LAMDAR)= 0.3344
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TEC INITIAL DATA

PRYSICAL OPERATING CONDITIONS

SUMMARY

EMITTER TEMPERATURE (TE)= 1700.0 KELVIN
COLLECTOR TEMPERATURE (TC) = 773.0 KELVIN
EMITTER WORK FUNCTION (EWF)= 2.642 EV

COLLECTOR WORK FUNCTION (CWF)= 1.630 EV
CONVERTOR PRESSURE (PN) = 1.541 TORR
GAP THICKNESS (D)= 0.254 MM
OPERATING CURRENT (J)= 2.000 AMPS/CM"2
TEC FUNCTION SETTINGS-=---
DIAGNOSTIC LEVEL (CHKDOT)= 1
RESTART SEQUENCE (OFILE)= O
POINT DENSITY (N)= 11
PHYSICAL PARAMETERS EVALUATED--~--

RICHARDSON CURRENT (JRIC)= 0.51E+01 AMPS/CM~2
REFERENCE DENSITY (NR)= 0.10E+15 1/CM*3
CHARACTERISTIC TIME (TCHAR)= 0.0208 SECS*E-06

NONDIM CURRENT (I)= 0.0196
NONDIM EMISSION (ENR) = 0.008 (NRIC/NR)

KNUDSEN NUMBER (KN) = 0.0791

SQRT (MASS RATIO) (SMR) = 0.0020

MEAN FREE PATH RATIO (LAMDAR)= 0.3344

TIME SETTINGS
NSTEPS= 1
T2= 500.0
DELTAT= 1.000
DTP= 1.000

LSF= 10

- —— - - - -
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RESULTS AT TIME = 0.00 OPERATING VOLTAGE= 1.074
ENE = 0.027 ECHI= 6.241 EALPHA= 0.460
CNE = 0.000 CCHI= 6.734 CALPHA= 0.482
PHIB= 0.000 VD = 0.422 EMISS =.268E-01

NDOT (#) NEB (#) TDOT (#) TAU (#)
0 0.0015 ~0.154 -0.0526 1.52
1 -0.0151 0.298 -0.0537 1.52
2 -0.0158 0.661 -0.0555 1.51
3 -0.0141 0.943 -0.0569 1.51
4 -0.0122 1.145 -0.0582 1.50
5 -0.0104 1.267 ~-0.0594 1.50
6 -0.0088 1.309 ~-0.0608 1.50
7 -0.0072 1.271 ~0.0623 1.49
8 ~0.0058 1.153 ~0.0641 1.49
9 -0.0050 0.953 -0.0665 1.48

10 -0.0083 0.670 ~0.0698 1.47

11 -0.0340 0.270 -0.0768 1.45
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RESULTS AT TIME =

RESULTS AT TIME =

WO-JAUBWNFO

10
11
12

RESULTS AT TIME =

-0.0704  -0.551
100.00
0.098  ECHI=
0.000  CCHI=
0.000 VD =
NDOT (#)  NEB (#)
0.0003  -0.035
-0.0007 0.081
-0.0018 0.200
-0.0028 0.316
-0.0037 0.419
-0.0043 0.501
-0.0047 0.552
-0.0046 0.562
-0.0043 0.524
-0.0035 0.431
-0.0022 0.281
-0.0006 0.074
0.0013  -0.170
200.00
0.232  ECHI=
0.000  CCHI=
0.000 VD =
NDOT (#) NEB (#)
0.0001  -0.014
-0.0003 0.034
-0.0007 0.084
-0.0011 0.134
-0.0015 0.179
-0.0018 0.216
-0.0020 0.240
-0.0020 0.247
-0.0019 0.232
-0.0016 0.193
-0.0010 0.127
-0.0003 0.033
0.0006  -0.081
300.00
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0.000  CCHI=
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NDOT (#) NEB (#)
0.0001  -0.006
-0.0001 0.015
-0.0003 0.036

-0.0807 1.43
OPERATING VOLTAGE= 0,982
3.183 EALPHA= 0.617
3.069 CALPHA= 0.719
-0.203 EMISS =.981E-01
TDOT (#) TAU (#)
0.0001 1.14
0.0001 1.13
0.0000 1.11
-0.0001 1.10
-0.0001 1.09
-0.0002 1.08
-0.0003 1.07
-0.0003 1.06
-0.0004 1.05
-0.0005 1.03
-0.0006 1.01
-0.0008 0.97
-0.0009 0.95
OPERATING VOLTAGE= 0.946
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-0.448 EMISS =.232E+00
TDOT (#) TAU (#)
0.0006 1.19
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0.0008 1.15
0.0007 1.13
0.0006 1.11
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0.0005 1.08
0.0004 1.06
0.0002 1.03
0.0001 1.00
-0.0002 0.93
-0.0003 0.90
OPERATING VOLTAGE= 0.910
1.440 EALPHA= 0.551
1.374 CALPHA=  0.754
-0.698 EMISS =.526E+00
TDOT (#) TAU (#)
-0.0001 1.23
0.0007 1.27
0.0012 1.27
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3 -0.0005
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APPENDIX A - Fokker Planck Collisions Presheath

This theory has been developed under this grant and is found to be applicable to fully
ionized plasmas but was not incorporated into the Thermionic Convertor work due to its

computational complexity.
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NOMENCLATURE

o - Inverse square of the particle thermal velocity
61,43,--- - Coefficients of the potential structure
a,b - Integral limits

A - First derived Fokker Planck collision function
B - Second derived Fokker Planck collision function
di(r) - An m x 1 matrix

D(r) - An m x 1 solution matrix

¢ - Electron charge

E - Electric field strength

f - Particle distribution function in velocity space
F - Nondimensional particle distribution function in velocity space
g - Collision function

h - Grid spacing width

k - Boltzmann’s constant

L - System dimension

m - Number of points in velocity space

m - Particle mass

M - Reduced mass

n - Plasma density

. np - Reference density

¢ - Elementary charge

R - Radial velocity component

t - Time

T. - Ion temperature

T. - Electron temperature

T(r) ~ An m x m matrix

U - Potential

v - Velocity vector
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v%(r) - An m x 1 matrix

V(r) - An m x 1 solution matrix

z - Position vector

z - Axial position component

s - Axial velocity component

Z - Jonization level

Z - Nondimensional axial velocity component

a - Potential gradient across the plasma

B - Exponential coefficient of the presheath rise

T - Fokker - Planck coefficient

AU - Potential expansion parameter

¢o - Permitivity of free space

¢,n, € - Variables of integration

8 - Velocity rotation angle in cylindrical coordinates
Ap - Debye length

X - Mean free path

A - Coulomb logarithm

r - Nondimensional time

® - Electric potential

¢ - Nondimensional coefficients of the potential structure

Subscripts:

¢ - Collision term
¢ - Electron
i-Jon

n -~ Order of expansion

Superscripts:

1 - Particle species with which collisions occur
¢ - Nondimensional
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SUMMARY

The Maxwellian sources and charge exchange terms used to model particle inter-
actions in current presheath models do not represent the Coulomb collisions taking
place in fully ionized plasmas. These models approximate the collisional effects in
the presheaths of partially ionized plasmas but are used to implicitly extrapolate
the interesting case of fully ionized plasmas. The present study uses a Fokker -
Planck collision term which models the limit of the small angle Coulomb collisions
that occur in fully ionized plasmas. Normally these small angle collisions dominate
the particle interactions of fully ionized plasmas. The Boltzmann equation coupled
with the Fokker - Planck term, and the Poisson equation have been expanded using
an exponential asymptotic technique. These equations have been solved numerically
to determine the time dependent evolution of the presheath. The results presented
show the presheath potential structure and particle distribution in velocity space.
The model produces a self-consistent and accurate potential structure. The particle
velocity distribution in the presheath has the correct acceleration of ions toward the
wall but because the Fokker - Planck collision term only models the limit of small
angle collisions it is unable to clear the particle distribution of returning ions. The
collisional processes become dominated by the effects of the large angle collisions as
the Debye sheath edge is approached. This study has found that a presheath model
which describes the Coulomb collisions occurring in a fully ionized plasma must
account for both the small angle and the large angle particle collisions to explain

the clearing out of returning ions that must exist for the transition to an absorbing
wall.




CHAPTER 1
INTRODUCTION

The interaction of man and plasma, in some form, exists at almost all levels
of society. A plasma is an ionized gas that has a collective behavior in an electro-
magnetic field. Plasmas exist in everyday devices like flourescent lights, neon signs,
and electric arc welders. An understanding of the basic behavior and interaction of
plasmas is essential to the advaxicement of all current plasma applications and to
the discovery of new applications. This thesis involves the study of how a plasma
interacts with the walls and surfaces with which it comes in contact.

Why is it important to understand plasma - wall interactions? Two basic reasons
answer this question. First, a plasma has a strong effect on any surfaces it comes
in contact with. The high temperature plasma can erode or destroy any surface
quickly pitting and changing a wall which may need to maintain a particular profile
or surface condition. Secondly, the wall affects the characteristics of the plasma.

A surface can have a profound effect on the plasma depending on the amount and

. rate at which it can absorb energy. Examples of situations in which plasma - wall

interactions are of importance include:
o Diverter plates in magnetic confinement fusion reactors.
e The rails in a plasma rail gun.

e Any body ( like the space shuttle ) upon reentry to the atmosphere.

-

e Plasma switches.

e Plasma etching.




e Almost, every other use or occurrence of plasmas.

This study is primarily applicable to fully ionized plasmas. The hot tempera-
tures necessary to produce fully ionized plasmas occur only in situations like on the
surfaces of diverter plates in Tokamak fusion reactors.

The development of a mathematical model to represent the plasma - wall in-
teraction region, or sheath, and a numerical solution to this model is the focus of
this thesis. An understanding of the interaction between the plasma and the wall
is achieved with a time dependent solution to the sheath region. If the potential
structure and the particle velocity distributions are known for every location in the
sheath then the energy going into the surface can be determined. In this way the
results of this study can be used as a boundary condition for problems involving

plasma characteristics and for problems invlioving the surface physics of plasma

devices.




CHAPTER 11
BACKGROUND

A plasma will naturally maintain itself in a neutral and field free state. Ap-
plication of forces and processes that try to alter the equilibrium are resisted by
the plasma. A surface within a plasma that is not at the same potential as the
plasma will be shielded from the remainder of the plasma by a sheath. The outer
edge of this sheath is nearly at the plasma potential. Bohm!!! first came up with a
criterion to determine the extent of the sheath. Bohm modeled the sheathrr-egion
as completely collisionless. He also considered that the transition region from this
collisionless sheath to the plasma was too small to be important.

More recent work has been done to describe this transition, or presheath, fegion.
Selfl?l has an exact solution to the sheath equation and has shown that the collision-
less sheath makes a transition directly to the neutral plasma in the limit as 42 — o0,
where Ap is the Debye length and L is the plasma dimension. Emmert et al.®! has

determined a presheath structure based on the assumption of a Maxwellian source

- of ions to model the particle collisions. The solution to this model shows that the

transition point from the sheath to the presheath has a finite electric field strength.
Bissell and Johnsonl!¢ have perfomed a similar solution using a Maxwellian source of
ions. In contrast to Emmert et al., Bissell and Johnson have found that the electric
field strength becomes infinite at the sheath edge. This solution agrees with the
fluid and cold ion models. In a recent paper Bisselll®l shows that Emmert obtained
a finite electric field strength be.'cause the Maxwellian source term used produced

no ions at the point of zero velocity. Bissell and Johnson used a more realistic
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Maxwellian source that produced ions at the zero point in velocity space for their
solution.

Another approach to the problem involves the use of a charge exchange term to
model the particle collisions. Riemann!® has produced results using this technique.
In a recent paper by Main!" a charge exchange model is used to obtain a solution
to the presheath potential structure and particle distribution. This model involves
an asymptotic approximation of the plasma equations. The Boltzmann and Poisson
equations are asymptotically expanded and then solved analytically when combined
with a charge exchange model of the particle collisions.

All of these sheath and presheath solutions have modeled particle collisions by
large instantaneous changes in particle velocity. These models do not represent the
Coulomb collisions occurring in the presheath of a fully ionized plasma.

The current study extends the asymptotic solution presented by Main!” to in-
clude a Fokker - Planck collision term instead of the charge exchange term. Unlike
the previous collision terms used, the Fokker - Planck term describes the Coulomb
collisions that exist within a fully ionized plasma. The addition of the Fokker -
Planck term necessitates the use of numerical techniques, rather than analytical
techniques, to obtain a solution. In us.ing the Fokker - Planck term the collision pro-
cesses are being modeled directly. The model developed obtains the time dependent

evolution of the presheath for a fully ionized plasma.




CHAPTER III

MODEL FORMULATION

3.1 Concepts

In order to have a complete understanding of the problem at hand certain

concepts need to be presented which will help in understanding the overall structure’

of the model.

1) Debye Length (Ap) - The shielding distance beyond which the particle charge
effect is weak. This is the natural charge separation distance. Negatively charged
particles become surrounded by positively charged particles and vice versa, thus,
balancing the overall charge at any point ( see figure 3.1 ). There is a point beyond
which a particle is not effected by the specific charge but responds to the influence
of the entire plasma. The thermal effects in the plasma become dominant over the
electric field strength.

2) Mean Free Path ();) - The average distance a particle travels before its

_trajectory has been altered by ninety degrees. The mean free path is a function of
.the density of the plasma. The denser the plasma the shorter the mean free path.
For the plasma under consideration in this study A >> Ap.

3) The coordinate system used to describe the plasma - The coordinate system
used in the model is known phase space. In this system any point is described
using three position coordinates and three velocity coordinates. Any orthogonal

coordinate system, cartesian, cylindrical, spherical, can be used to describe both

the position and the velocity components.

- 7
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4) Distributions and Distribution Functions - Plasmas are studied in a collective
sense. The motion of the entire plasma and not individual particles is described
by the model. Therefore, the velocity of the plasma at any given location must be
described by a distribution. The distibution function describes the overall particle
velocity distibution.

5) Potential - In a plasma the wall potential is greater than the neutral plasma
potential. The lighter, thus, faster electrons are absorbed by the wall faster than
the heavier and slower ions. A net positive charge exists near the wall, increasing
the potential ( see figure 3.2 ). The potential at the physical interface between
the wall and the plasma is dependent on the rate at which ions are absorbed by
the surface. In this study v = —¢® where ¢ is the electron charge and & is electric’
potential in electron volts so that U has units of energy. The addition of the negative
sign defines potential in the reverse of the usual sign convention so that increasing
potential repels electrons.

6) Collision Possibilities using the Fokker - Planck Collision term - To describe
the overall sturcture of the sheath the various collision possibilities must be included
in a comprehensive model. The Fokker - Planck term describes the four major
collision possibilities.

1) Ion - Jon
2) Ion - Electron

3) Electron - Ion

4) Electron - Electron

The collision model does not take into account thr & body collisions. Three

body collisions are very rare, as such, the model is not hampered by the lack of
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terms to describe these collisions.

3.2 Wall Region Model

The model of the Plasma - Wall region can be broken into three areas.

1) Neutral Plasma Region (O(L)) - The neutral plasma region represents the
majority of the system 2nd can be considered to have a physical width that is on
the order of the overall dimension of the system, L. This region is considered to be
fully collisional. The velocity distribution is near Maxwellian and as such can be

modeled by fluid type equations ( see figure 3.3 ).

2) Debye Sheath Region (0(Ap)) - This region is a very thin area directly adjacent
to the wall. Its width is considered to be on the order of a Debye length and since
X >> Ap no collisions are expected in this region. This collisionless sheath was

first modeled by Langmuir®l and Bohm!!! and is considered very well known 2nd
understood.

3) Collisional Presheath Region (O(\;)) - This is a transition region between the
collisional neutral plasma and the collisionless Debye sheath region. It is considered
to have a physical width on the order of a mean free path. Therefore, collisions are

‘expected but at the same time the region cannot be considered fully collisional.

The potential must transition from a lower level in the neutral plasma to a
higher level at the wall. The goal of this study has been to obtain a time dependent
model of the evolution of the presheath region which asymptotically approaches the
known potential in both the neutral plasma and in the Debye sheath region.

In order to show the validi& of the three region model an example of bebye

sheath width in relation to the overall wall region is appropriate. For this example

.
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average hydrogen fusion plasma characteristics have been assumed:
T, = 10°K
ng = 10¥m=3

If the Debye length within this plasma is calculated an order of magnitude value
for the Debye sheath width is determined. An appropriate equation for the Debye

length in meters is:®
T}
Ap = 69(;) (3.1)
From this equation:
Ap = 2.18x10"%m
The overall sheath width is on the order of a mean free path. An appropria:te

equation for the mean free path in meters is:/:°l

X =12 x 10"% (%)’(%)d (3.2)

For a singly ionized plasma Z = 1. Using this equation and the above example

plasma characteristics the mean free path can be calculated.
A =114x10"%m

This is an order of magnitude estimate value for the width of the entire sheath
region. Since the Debye sheath width is on the order of a Debye length it can be
seen that the rollisionless sheath is very thin in comparison with the entire wall
region.

In order to obtain an idea of the importance of the electric field in the wall
region an order of magnitude analysis is useful. The magnitude of the electric field
is proportional to the thermal energy per length scale.

E~ _k_ll (3.3)
z -
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In the sheath region the length scale is the Debye length.
kT
E~ 5V (3.4)

Therefore, in this region the electric field is very significant since Ap is very small.
The collisional effects are small in comparison, and can be neglected.

In the presheath region the length scale is the mean free path.

kT
E~ ~ (3.5)

Therefore, the electric field strength is on the order of the collisional effects making
both important factors within this region.

In the neutral plasma region the length scale is the overall system dimension.

kT
E~=t (3.6)

Therefore, the electric field is very weak and can be neglected in comparison with

the collisional effects.

3.3 Presheath Model

3.3.1 Equations Describing the Collective Behavior of a Plasma

The primary equation used to describe the behavior of a plasma is the Boltz-
mann equation. The Boltzmann equation represents the collective motion of many

charged particles moving in an electromagnetic fieldi*},

Ueoga 120N (2

at "3; m dz dv (3.7)

Where the + sign is for ion particles and the - sign is for electrons. In the Boltzmann

equation f is the particle distribution function, and is defined such that n = I3, fdv.
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The quantity ¢ is time, v is a velocity vector, z is a position vector, m is the particle
mass, and U is the potential. The term on the right hand side represents particle
collisions and can take on various forms depending on the model heing used.
Another important equation in describing the bahavior of a plasma is the Pois-
son equation. The Poisson equation is the eilementary definition of potential as the

collective effect of charged particles on a point!”,

%;’- = arg? [ /_ : filv, AU) du - [_ : folv,A0) du] (3.8)

Where q is the elementary charge, the subscript i refers to ions and the subscript
« refers to electrons. The term in brackets is the ion - electron density difference.
The potential is the driving force in the Boltzmann equation. The Poisson equation-
relates the potential to the particle distribution.

To complete the set of equations necessary for a full description of the presheath
a collision term must be chosen to model the particle interactions. This study uses
the Fokker - Planck collision term to model the particle collisions. The Fokker -

Planck term represents the right hand side of the Boltzmann equationltll.

af a3, ma 1 3 3%y |1
{a}, = f[' ETACEyv i R ¥ ol U o (32)
Where,
' £e?aA
g(v) = /f(u') [o=v|dv ‘ (3.11)
mm'
= (3.12)

Where M is called the reduced mass. No superscript refers to the particle species
undergoing the collisions and the superscript / refers to the particle species with

which the collision occurs.
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The Fokker - Planck equation describes the Coulomb collision between two
charged particles. Certain restrictions and assumptions are made when using the
Fokker - Planck collision term. First, it best describes fully ionized plasmas. The
collision term models charged particle interaction and is most accurate for plasmas
with few neutrals. This situation occurs only on the hottest of plasma surfaces like
the diverter plates in Tokamak fusion reactors.

The second restriction involves the type of collisions that the Fokker - Planck
term models. The overwhelming majority of particle collisions lead to only small
deflections in the particle trajectories. The Fokker - Planck term describes the limit
of these small angle deflections. Finally, the model does not take into account three

body, and higher order, collisions.
3.3.2 Solution Conditi

The three equations presented in the previous section in conjunction with the
asymptotic forms of potential and velocity distribution provide the necessary infor-
mation to determine the presheath structure if two additional conditions are met.

First, if the equations are written in cylindrical coordinates the particle velocity
distribution is axially symmetric. There is no theta, ¢, dependence of the velocity

distribution. Cylindrical coordinates are used for both the velocity and the position.
. The ’s’ direction is perpendicular to the wall (see Figure 3.4) with the positive

direction being defined into the wall. The coordinates R,4,z have been used in

velocity space for convenience.

The second condition for a solution to these equations involves an assumption
of the particle velocity distribution parallel to the surface. For this model the
radial velocity distribution has been assumed to take the form of a Maxwellian

distribution. In addition, the temperature in the radial direction has been assumed
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to be uniform and constant at all ’z’ locations. Thus, the radial velocity distribution
is constant for any position. Figure 3.5 is a schematic of these conditions. Note
that at any 'z’ location and rotation angle, 4, the radial velocity distribution is

| constant and follows a Maxwellian distribution. This represents the conditions of
uniform temperature and axial symmetry, throughout the wall region. Figure 3.5
also shows a representation of the point of no returning ions. This is the point
where the presheath transitions to the collisionless sheath.

The conditions of uniform temperature and radial Maxwellian distribution al-
though good approximations are not exact models of the real situation.

The overall problem reduces to one dimension, the s direction, with the above
conditions. The ¢ dependence having been removed by the axial symmetry and the
radial dependernce having been removed by the Maxwellian assumption. This one

dimensional problem can be solved by staight forward numerical techniques.

3.3.3 Expansion of the Boltzmann Equation

The presheath model involves the expansion of the potential and velocity into
asymptotic appraximations. The potential is assumed to follow an exponential

asymptotic form.

U=Up+a1AU + a:AU2 + oo (3.13)

where

Uo=az and AU = ¢ (3.14)

1,03 -- are parameters which describe the potential structure. Alpha, a, is non-zero
for a non-zero potential gradient in the neutral plasma. AU is called the potential

expansion parameter.

The particle distribution in velocity space is a function of potential and can be

SW
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similarly expanded.
f(v, AU) = fo(v) + AU fi(v) + AU? f3(v) + - (3.15)

The Boltzmann equation can be written as

o _af 8(AU) , 18Vf
“3(80) 3z ~mozav { } (3.16)

where + sign is respectively positive for ion particles and negative for electrons.
The potential U has units of energy and is defined as shown in figure 3.3 such that
U = —e® where @ is electric potential. The Boltzmann equation can be expanded
using equations 3.13 and 3.14. In addition since the solution is one dimensional in

velocity space the velocity derivatives reflect only the 'z’ direction. The following

expansions are used.

3 % Ayl auedfa,

3 - At 3t 3 T (3.17)
.
-a(Tfﬁ = fi +28Uf; +3AU% fy + - - (3.18)
i%.’ﬂ = SAU (3.19)
E
% = a+ 03, AU + 288;AU3 + 38aAUS + - - - (3.20)

9f _ 3  Apldfs apidfa, ...
o= SoaUGE+aUiSy (3.21)

Using these expansions the Boltzmann equation can be broken down by order in

AU assuming the collision term can be likewise broken down:

. 3fo adfy
1: *—== [{ ] (3.22q)
AU : a’ L Gy P ‘” C ’,:‘ ‘:’: [{ ] (3.225)
] % a afz s B9 | P33 9f0
av?: at +2W:fx 8: m 8: m 0Oz [{ at }G]AU’ (3:22¢)
AU™: fn In o nfafa £ o afn p‘l 3fn-1 + zﬂaﬁ afn-ﬂi

8: m &8sz

(" =1)Ban-1 91 nﬂdu af _ [( } ]
aus

a' Oz (3.22d)

577
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The above exponential expansion is the only known way to break apart the Boltz-
mann equation. To complete the expansion the Poisson and Fokker - Planck verms
must be similarly broken down.

At this point it is appropriate to nondimensionalize the expansion of the Boltz-

mann equation. The following nondimensional quantities have been used.

% .
F: v~ for 0<i<n (3.23a)

=mt (3.23b)

Z =Vd's (3.23¢)

(3.23d)

o =—— (3.23¢)

for 1<i<n (3-23f)

Where ng is a reference density, a and o’ are the inverse square of the therm;l
velocities of the colliding particles, a = ;2 and o’ = 2. The quantities p_, through
¥ represent the potential structure of the presheath. F: is nondimensionalized

such that 1 = [ FdZ. Using these nondimensionalizations, the expansion of the

Boltzmann equations becomes

aF aF
1: gz [ =} ] (3.240)
. OFR ai'l 3F, aF
AU: 3, TR te. 137 0157 [{—_ ] . (3.24b)

oF. aF; aF, aF aF
vr. %52 2 1 2.l _
A 3y TWoZIR oLz teigr 20 [{ o }.] - (3.24¢)

. 9F. dFn | 3Fa_y 3Fn_z
AU™: ar +n¢oZFni¢_g 32 + o1 37 + 202 E¥; =+
aF aF
E(n=en-157 zl e Z° [{ } ]w (3.24d)
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3.3.4 Expansion of the Poisson Equation
The Poisson equation,
U
— = 47g? / fi(v,AU) dv - / fo(v,AU) dv (3.8)
dz3
is broken down using the same technique as the Bcltzmann equation. Since:
azv 2 3 | 3 3 3
5-? = f%a, AU + 48%3,AU% + 9%, AU +--- (3.25)

-on

 f{o, AV) dv = / folv) dv + AU / f1(v) dv + AU? / falv)dv+---  (3.26)

Using these expansions the Poisson equation can be broken down by order in AU.

1: 0=4xg® [ /_ : fiodv— /: : feo(v) dv] (:‘3.270)
AU: B%a, = 41rq’[ _: fir(v)dv = /.: far(v) do] (3.27b)
AU? . 4%, = 4xg? [/_: fia(v) dv = .: fea(v) dv] (3.27¢)
AU™: n3f%, = 4xq’[/.: fin(v)dv—~ /:: fen(¥) du] (3.272)

The assumption of Boltzmann electrons is made to enable the numerical calcula-
tions to proceed with time steps on the order of an ion characteristic time. In the

asymptotic presheath the Boltzmann electron assumption becomes

ny = noe-[c.Av+uAv'+---+-.Av')g}; (3.28)

where n, is the electron density, T, is the electron temperature, and n, is the electron

deansity in the asymptotic presheath at AU = 0. Expansion of (3.28) in terms of AU
yields

n,=[no}+AU[ kT.no]-i-AU’[( kT.+;(k‘1’EP) ]

+AU? [( - f-;-,; + (:11?;2 s (ch)’) ] (3.29)

. 59
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With the assumption that Ap « X; the Poisson equation reduces to equating electron
and ion densities in order of AU. The Poisson and Boltzmann electron equations are
nondimensionalized in the same manner as the Boltzmann equation. The nondi-
mensionalized Poisson equation (3.27a-d) is combined with the Boltzmann electron

equation (3.28) to become

= FodZ =n¢(""""*"“"'*°'(',’?) (3-30a)
-0
= FdZ =’le[""""+"l"‘5(¥5‘) [_er
-00 L ¥o
" Rdz =pdetreld [ _ e

[ o

" RydZ =nerrrteal i [_ e
-0 L ¥o

where 7 = 2 and may be specified as a function of time. This equation can be used
to solve for the potential structure at each time step. T; is the ion temperature and

T. is the electron temperature.

3.3.5 Expansion of the Fokker - Planck Term

The Fokker - Planck term must also be expanded in order of AU but first must
be put into cylindrical coordinates. In addition, the assumption of axial symmetry
must be accounted for in the term. This can be accomplished by expanding each

term in the general Fokker - Planck term.

{ } [ T e" )+;8:80.(’ awao.)] (39)

The first term can be rewritten:

-%(v - f9(V39)) (3.31)

Vg = 1 a( ag) 19% 9%

RIE\"3R) YRzt 55 (3.52)

Le
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Axial symmetry eliminates all § dependence, eliminating the middle term. In addi-
tion, with the assumption of a Maxwellian radial velocity distribution the problem

has been reduced to one dimension. Thus,

g
) T
(V) = = (3.33)
and the first term reduces to: _
3/, m a3y
-5 (I533) (330

The second term in the Fokker - Planck equation,

1 32 3¢
2 Ju;dus (f v; vy ):

can be reduced directly to the one dimensional case.

192 /,3%
233 (153) (335)

Therefore, the Fokker - Planck term in one dimensional cylindrical coordinates is:

1{af 13% ¢, 3% /. maYy
HE L =305 - 5055 (s.38)

In order to get a complete collision model the function ¢ must also be converted to

the appropriate coordinate system.

)= [ 1) v-o o

This definition can be reduced for the one dimensional case.

9(z) = /_: f(n)|3=n|dn (3.37)
or, written another way
s = [ flereleide (3.38)
b! ..
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With this definition the Fokker - Planck term becomes:

P{Z} ;;_;(,/“ L+ 16146 - m/ Z (re+e) 1€146) (339)

For brevity let s denote a derivative with respect to s. Using this notation the Fokker

- Planck term becomes:

r{g{} S35 [ reraicia) - g (e [ meraleis) o)

The Fokker - Planck term is nondimensionalized using the same variables as the

Boltzmann equation.

(&) ~am(Fis [ rzvaicia) + F (e [C rizeniss) oa
Let:
AR =35 / F(Z+¢)|¢ | de (3.42)
B(F) =32 = “F'”(Z+:)l:|dc (3.43)

The Fokker - Planck term can be written in a compact form using these defined

functions.

{ Z—f—} 377 (m(r)) (FB(F)) (3.44)

The Fokker - Planck term can be expanded by order in AU using the same technique

as the Boltzmann equation.
(51.- [ (maca) + dp(nmum)
+ AU[ 357 (RA(R)) + iz (RB(Fo)) + 3923,- (FoA(R)) + a—"f (pog(p,))]
+ e e

W

2 (az= (F"'""‘(F w)) + 55 (Fa-m B, "')))]

m=0Q

(3.45)
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This expansion can be combined directly with the expansion of the Boltzmann

equation.

3.3.8 Solution Approach

To obtain a time dependent solution to the Boltzmann equation with the Fokker
- Planck collision term a numerical technique is necessary. The solution presented
has been limited to ion - ion collisions because these collisions represent the majority
of the collisional energy and momentum transfer within the presheath. The positive
signs in the Boltzmann equation must be applied for ion - ion collisions. The ratio
of particle mass to reduced mass, 2, must be equal to two for like particles. The
ratio of the inverse squares of the particle thermal velocities, &, must be orne for
like particle collisions. The nondimensional Boltzmann equation reduces to the
following form.

aF, aF;
-3 z= Z (r A(Fo)) 3 (F B(Fy)) + eoiZFi + o153

: mean-m i (az: “"'A(F"‘)) + %(F"'”‘B(Fm)))

(3.46)

where the summations are taken to be zero if i =0. The functions A(F) and B(Fa)

can be written:

A(F) = F’ "(Z+¢)islds (3.47)

BF)=- [ F"(Z+9)|s]ds (3.48)

The i’ equations in the expansion are solved to obtain the time dependent
particle velocity distribution. The Poisson equation is employed at each time step
to obtain the potential structure. The ratio of the higher order equations with
respect to the first order equati;'m eliminates the ne***~+*~I%(¥) term from the

Poisson equation. Using this technique each successive component of the potential

- /)
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structure can be determined from the previous components.

) oo FidZ =2 (E) (3.49a)
f:"“ FodZ wo \ T,

[S FadZ m(ZT.') 1(m"(zr.-)’

=2 - ==+ —d 3.4%
IS FdZ w\T./ 2 Po) Te (3.498)
LGBy (Z), me(E)_1(m)(BY
I::.FOdZ vo \ T ¥o o e 8\ vo T, )

Using these equations the particle velocity distribution and the potential structure
of the presheath are determined as a function of time.

Of interest in this study is the point at which there are no returning ions.
This is the presheath - sheath interface. This occurs when the net ion flux awiy'
from the wall is zero. To calculate this point in the presheath it is necessary to
obtain a value for the potential expansion parameter AU such that when the overall
particle distribution is reconstructed from the various terms in the expansion no
returning ions are present. Thus, at the critical point of no returning ions the
model determines the total particle velocity distribution, the potential structure,
and a value for the potential expansion parameter. From the potential structure and
the potential expansion parameter the presheath height at the point of no returning

ions can be determined (see figure 3.5).
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CHAPTER IV

NUMERICAL 1ECHNIQUE

4.1 Problem Approach

The solution of the Boltzmann equation, as written in equation 3.46, coupled
with the Poisson equation (3.49) is the goal of the numerical procedure.

The general approach is to solve the Boltzmann equation for the particle velocity
distribution using a partially implicit, partially explicit scheme. Each step in time
the Boltzmann equation is solved using some results from the previous time step.

In equation 3.46 the left hand side is solved implicitly while the right hand side is

solved explicitly.
ar 8’ aF;
3 373 (FAWF) - 37 (F B(Fo) +poiZFi 40157

== Z p"‘man_m * Z (azz( -mA(Fm)) 82( .'-...B(F,..))) (8461

The left hand side of this equation can be put in a matrix form.

[ T(f)' ] [F.‘(r + Ar)] (4.1)

In this form the matrix T'(r) is an m x m matrix created from the left hand side of the
Boltzmann equation. The quantity m is the number of divisions in the velocity space
Z chosen for the numerical scheme. The matrix T(r) is computed from A(F,(r)) and
B(Fo(r)). The values of these derived functions are taken from the solution to the
particle velocity distribution at the previous time step, r. Numerical derivatives are
used to represent the partial dex;iva.tives in the equation. This procedure produces

a diagonal matrix where all elements except those on an odd number of centered
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diagonals are zero. The number of diagonals refiects the order of accuracy in the
solution. Diagonal matrices of this form are easily and quickly inverted. The
Fi(r+ Ar) matrix is an m x 1 matrix of unknowns that represents the particle velocity
distribution at the current time step. i’ equations of this form can be written
corresponding to the number of terms in the expansion.

The right hand side of the Boltzmann equation can also be put in a matrix

v1 [v.-‘(f)] +--+pn [v."(f)] + [de(f)] (4.2)

The scalar ¢, values are unknowns and represent the nondimensional coefficients in

form.

the asymptotic potential structure of the presheath.

The v?(r) matrices are m x 1 matrices which are comprised of the partial deriva.:
tives of the velocity distribution at the previous time step, r. They represent the
first summation on the right hand side of the Boltzmann equation.

: 3F;—m
2 ”"‘("'" a2

m=l

The d4; matrix is an m x 1 matrix comprised of the second summation on the right

hand side of the Boltzmann equation.

S (s (Bemdtem) + 5 (FomB(£)

ms)

All values of the distribution and the functions A(F.) and B(F.) are taken at the

previous time step, r.

Putting together equations 4.1 and 4.2 a matrix form of the Boltzmann equation

is created that can be solved for the particle velocity distribution.

[ T(r) ] [ﬂ(f'*Af)] =, [V.-‘(f)] +: -+ pn [v.!'(r)] + [d.-(r)] (4.3)

- LG
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%’ equations of this form can be written corresponding to the number of terms in
the asymptoic expansion being used.

These equations are quickly inverted to obtain the particle velocity distribution

at the current time step.

[1"-'('+Af)] =1 [V.-‘(f)] *roten [V.-"(f)] + [De(f)] (4.4)

Where the V, and D matrices represent the m x 1 solution matrix to the inversion
of the T(r) matrix with the corresponding v, or 4 matrix.

Tkz particle velocity distribution is obtained from this equation using the o,
values from the previous time step.

Equation 3.49 is employed to obtain the p, values at the current time step.

- .
:[:snf_‘d_z . (%) (2.49aq)

2. FdZ ™ o
(?Tl)’ (3.49)

[ F2dZ a_ﬁ(gg) .
f::‘ Fodz Yo Tc
3 3 3
B -H2E e

e1
Po

-
LnFydZ m(zfe) +m§

T\

2. FdZ o

The new distributions are integrated numerically and the p, through pa scalars
.are determined consecutively. The value of g, is input and is a nondimensional
representation of the coefficient 8 in the potential expansion parameter, AU.

For each time step, the overall particle velocity distribution can be determined

at any location from the original expansion once it has been nondimensionalized.
F(Z,AU*) = Fo(2) + AUF(Z) + AU FR(2) + -+ (4.5)

since,

AU® = #o* (4.6)
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Where the s quantities are nondimensional. z has been nondimensionalized with

respect to an ion mean free path.

ngl

The potential structure of the presheath is detemined from the nondimensional

form of the original expansion of potential.
Us=Uj +p1AU® + 02AU? + - (4.7)

Using this procedure the time dependent evolution of the presheath is obtained.
The point of no returning ions occurs where the integral of the left half plane

of the total particle velocity distribution is zero.
o
0= / F(2)dZ (4.8)

This equation can be rewritten using the expansion of the particle distribution.

0 d L]
0= [ Fo(2)dZ+aU" / Fi(2)dZ + AU / Fa(2)dZ + - (4.9)

Equation 4.9 can be solved for AU* Since the particle distributions are now known
as a function of time and velocity. The entire solution at the point of no returning

ions is known with this last piece of information.

4.2 Numerical Integration, Differentiation, and Matrix Inversioa

In order to obtain a solution to the potential structure and particle distribution
in the presheath it is necessary to develope the applicable mathematical tools. The

primary techniques needed are integration, differentiation, and matrix inversion.

- 64
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4.2.1 Numerical Integration

Throughout the solution integration is computed using a Simpson’s i rule

techniquelt3l,
o h
/ HHz)dz = 5()} +4f3+2fs+4f+2fs+ - +2fac1 +4fn + f,.“) (4.10)

Where h is the spacing between the points and f; through f... represent the function
values at each point. This procedure has a global error of O(h*). If the step size is

chosen appropriately this procedure is very accurate.
2.2 ical Differentiati

The technique for determining numerical differentiation is a second order ac-
curate scheme. This reduces the number of computations while maintaining high
accuracy. Second order accurate numerical differentiation requires that only three
points be known. Thus, the 'T(r)’ matrix contains only three diagonals. If third
order accuracy was used the 'T(r)’ matrix would require five diagonals to represent
the five points needed for the differentiation. In addition, to maintain uniformity a
central difference technique is desirable on as many points as possible. The greater
the number of points needed for each derivative the more points that require forward
or backward difference techniques ( rather than the central difference technique).

Below is a list of the techniques used to obtain derivativesit3l,
Central Difference

9F _F(z+1)-F(z-1)

o - (4.11a)
83F F(z+1)=2F(z) + F(z~1)

2 ( (4.118)
@BF _F(z+2)-2F(z+1) +2F(z—1) = F(z-2) (4.11c)
az’ 2h3 . .

. bq
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Forward Difference

aF _ —-F(z+2)+4F(z+1) - 3F(z)

o = (4.124)
3:1: _Flz+2) - 21;(: +1) + F(z) (4.128)
.33: - F(z+3)-3F(z+ i)3+ 3F(z+1) - F(z) (4.12¢)
Backward Difference
%§ _3F(z) —4F(z ;hl) +3F(z -2 (4.13a)
?;,f _F(z)-2F(z ;21) + F(z-2) (4.13b)
aag' _F(z)-3F(z-1) + :f(z -2) - F(z-3) (4.13¢)

Where 4 is the grid spacing. The derivatives are being taken about point z.

It is worth noting that the third derivative equations require up to five points.
There is no second order accurate numerical third derivative representation. These
equations are third order accurate. This does not effect the 'T(r)’ matrix in that
it contains no third derivatives. The solution procedure requires third derivatives
only in the determination of the function B(Fi(r)).

These equations are used throughout the solution for derivatives with respect

to vel city, Z, and time, r.

In order to obtain a solution a procedure for inverting a diagonal matrix is
necessary. The procedure used will invert any centered diagonal matrix. For the
second order accurate case the matrix in question is tridiagonal. The procedure
uses Guassian elimination on all terms below the center diagonal and then through
back substitution determines thé solution vector. This technique can quickly invert

a 200 x 200 tridiagonal matrix.

10
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4.3 Obtaining a Solution

As in any numerical model certain restraints and conditions must be met to
obtain an accurate solution. This model requires some form of input distribution
function and in order to obtain higher order terms must also have a perturbation
applied to the potential structure. In addition, certain numerical techniques have

been used to remove instabilities in the model.
¢ 3.1 Initial Distributi

To model the presheath region an initial particle velocity distribution that con-
forms to a Maxwellian profile has been used. This profiie represents the distribution
that naturally occurs in the neutral plasma region. The idea is that the time de-
pendent evolution of the distribution will change from a Maxwellian at time zero to
a shifted new form as the presheath is entered. The Maxwellian profile is initially
given to the zero order term having set the initial conditions of all higher order
terms to zero.

If the potential structure of the presheath is not perturbed in some manner then
the model represents the neutral plasma region and the particle velociiy distribution
remains Maxwellian ( as it should ) If, however, a small perturbation in the

“potential stucture is added (ie. a nonzero a;,a;---) then the model readjusts to
describe the presheath region. In this manner the model is used to give the time

dependent evolution of the presheath.

4.3.2 Instability Damping

By the nature of the implicit - explicit technique being employed certain numer-
ical problems are expected to appear. This model is no exception. Two teci.niques

have been used to remove these instabilities.

01
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The most important thing to do to avoid numerical problems in a scheme of this
nature is to ensure that as much as possible of the solution is computed implicitly.
In addition, once some new data has been calculated it should be applied to any
new calculations immediately.

In this model each term in the expansion of the particle distribution function
uses the new data already determined in calculating all of the lower order terms.
Once F, is determined that information is used in calculating F,. This idea is
repeated for the higher order terms.

A second method 2ppliel to the model to eliminate oscilliatory instabilities that
start on a very small scale and grow is the application of a very weak averaging
scheme to the particle distribution functions. Each point in the distribution is

weakly averaged with the points on either side.

0.025F(Z +1) + F(Z) +0.025F(Z - 1)

F(2) = 1.05

(4.14)

This technique, although necessary, has the negative effect of falsely increasing the
energy in the system by spreading the distribution slightly (see figure 5.1). The

change is very small and can be considered insignificant with respect to the overall

solution.

4.4 Program Structure

The entire program has been written in FORTRAN and can be run on either
an IBM PC AT or on the CYBER mainframe. The code has been written in a seg-
mented manner that easily allows one section to be altered without having to alter
other sections. The overall structure of the program consists of three initialization
programs, three input data ﬁla., the main program, and three output data files.

The main program contains a driver and seventeen subroutines. Several of the sub-

-
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routines perform operations that are used throughout the main code. Figure4.1isa
diagram of the structure of the program. The flexibility of the code is derived from
the generalized subroutine structure and the ability to enter a variety of input vari-
ables. The driver keeps track of time and maintains the overall operating structure
of the solution while the subroutines perform the necessary manipulations. Below

is a list of the function of each program, data file and subroutine.

A_VE - Subroutine to smooth distributions by averaging.

CONSERY - Subroutine to determine conservation of energy, momentum, and
particles.

CONSOUT - Conservation output data file.

CRF - Particle distribution initialization program.

CRPHI - Potential structure initialization progi'am.

DENSITY - Subroutine to solve for a new presheath structure.

FDATA - Initial particle distribution data file.

FD1 - Subroutine to find first derivatives.

FD2 - Subroutine to find second derivatives.

FD3 - Subroutine to find third derivatives.

FINDA - Subroutine to determine ’4’ function.

FINDB - Subroutine to determize 'B’ function.

FPINIT - Primary initialization program.

FPOUT - Output particle distribution data file.

FPSHETH - Main program driver.

GETAB - Subroutine to make 4 and B function vectors.

INITDAT - Initialization dat-a. file.

MAKED - Subroutine to make d matrix.

- 13 -
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MAKETF - Subroutine to read initial particle distribution.
MAKEPHI - Subroutine to read initial potential structure.
MAKET - Subroutine to make T matrix.

MAKEY - Subroutine to make v matrix.

MODIAG - Subroutine to invert diagonal matices.
PHIDAT - Initial potential structure data file.

PHIDOUT - Output potential structure data file.

SIMPS - Subroutine to perform Simpson’s rule integration.

TOT - Subroutine to obtain total distribution at point of no returning ions.

14 .
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CHAPTER V
RESULTS

The ratio of ion temperature to electron temperature, #-, has been set to one
half throughout these results. There is little effect on the particle distribution or
potential structure if the temperature ratio is changed to other values. The electron
temperature is expected to be higher than the ion temperature in the presheath since
electrons absorb energy from electric and magnetic fields faster than ions and other
large particles.

Through repeated test runs of the model it was found that fifty-one points in
velocity space were enough to provide high accuracy and produce good results.
The range cf points in velocity space has been truncated to +5 nondimensional
units. The results show that at +5 the distribution is near zero, substantiating the
truncation.

A time step of 0.2 nondimensional times was found to keep the solution accurate.
Three nondimensional units in time were sufficient to produce stable results.

It was found that the magnitude of the higher order terms in the particle velocity
distribution drop off very rapidly. Thus, the higher order terms have very little
impact on the shape of the potential or of the particle distribution.

To understand the effects of a quiescent plasma interacting with a surface the
potential gradient in the neutral plasma has been set to zero. To accomplish this

the a term in the expansion of potential has been set to zero.

U=U+a,AU +a,AU% + ... (3-13)

- (Y -




32

where

Up = az and AU = (3.14)

A stable solution exists only for a specific critical value of the exponential coefi-
cient, 8, which represents the scale of the presheath. The quantitiy 2 is nondimen-
sionalized as po = ;ﬁ-, where ngT is an ion mean free path. It is expected, as shown
in section 3.2, that the critical value should be on the order of a mean free path. It
was found that ;2 = 0.4 produces the most nearly stable results. The distributions
become unstable for values greater or less than 0.4. The small remaining instability
ai 72r = 0.4 can be attributed to the inexact nature of the numerical solution.

The results presented here are first order and produce a complete picture of the
structure of the presheath because the higher order terms collective contribution
is more than an order of magnitude smaller. Figures 5.1 and 5.2 are plots of the
zeroth and first order expansions of the particle distribution in velocity space. The
zero order term remains Maxwellian because the potential gradient in the neutral
plasma is zero. The first order term of the distribution obtains a profile that has
roughly the shape ( but not magnitude ) of the negative first derivative of the zeroth
order solution. The potential expansion parameter at the point of no returning ions
is determined for each time step. Using the particle distribution functions and the
known potential expansion parameter together produce the overall particle velocity
distribution at the point of no returning ions, the presheath - sheath interface.
Figure 5.3 shows this distribution.

The positive shift in the total distribution is as expected for the presheath. The
ions are being pulled into the wall. The particle distribution for velocities away from
the wall is zero for the case of ﬁo returning ions. The point of no returning ions

exists where the particle distribution for velocities away from the wall integrates
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to zero. Figure 5.3 shows that the ion distribution becomes negative for velocities
away from the wall. A negative particle distribution cannot exist physically. The
addition of higher order terms does not correct the problem because the expansion
drops off so quickly that any higher order terms have no impact on the shape of
the distribution. The problem is fundamental to the type of collision term being
applied in the model. The Fokker - Planck term only models the limit of smal!

angle collisions. However, large angle collisions become important in the presheath.

The first term of the nondimensionalized potential structure, ;, has been ini-
tially perturbed to 1.0 x 10~* to obtain the results presented in figures 5.1, 5.2 and
5.3. Perturbing the potential structure provides the model with the nonequilibrium
condition necessary to initiate the time dependent development of the presheath.
The strength of the initial perturbation is not significant to obtaining an accurate
particle distritution and potential structure of the presheath. Figures 5.4, 5.5, and
5.6 are the result of an initial perturbation of 1.0 x 10~3 and figures 5.7, 5.8 and 5.9
are the result of an initial perturbation of 1.0 x 10-%. Comparing these results show
that the magnitude of the initial perturbation only affects the scale of the first order

term and has no effect on the overall particle distribution in velocity space.

Figure 5.10 is a plot of the position of the point of no returning ions, the
presheath - sheath interface, as a function of time for the three solutions. Since no
source of ions exists in the model the relative position of the plasma with respect
to the surface changes as a function of time. The wall is moving into the plasma,
or the plasma is moving into the wall, at the rate at which the wall is absorbing
ions. The three solutions have different magnitudes but follow the same profile.

The strength of the perturbation controls the relative position of the zero point.

Figure 5.11 is a plot of the potential structur: of the presheath obtained from

- 11
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the three solutions as a function of position. The data for the potential structure has
been taken from the solution at a nondimensional time of two. Note that the affect
of the different initial perturbation values is to cause a shift in the relative position
of the potential but has no effect on the shape of the potential or on the strength of
the potential at the point of no returning ions. Changing the perturbation strength
alters the location of the zero point but not its shape. The stronger the perturbation
the further the zero point is moved from the surface. The horizontal line in the plot
depicts the presheath height at the point of no returning ions. The vertical lines
show the position of the point of no : . rning ions.

A time dependent plot of the prahéa.th height at the point of no returning ions
is presented in figure 5.12. This plot shows that the time evolution of the sheath
height approaches smocthly to a nearly constant value of 0.16. All three solutions

fall on the same curve. This shows that the strength of the perturbation does nc.

affect the results obtained.
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CHAPTER VI
CONCLUSIONS

The solution obtained is an accurate representation of the time dependent de-
velopment of the Fokker - Planck pfeshea.th. The model produces a precise potential
structure, however, the distribution of returning ions breaks down in the presheath.
An aoscillation developes in the negative tail of the distribution, as seen in figures
5.3, 5.6, and 5.9. This oscillation cannot be removed by including additional terms
to the expansion. In addition, the sheath height of 0.16 determined at the point of
no returning ions is roughly an order of magnitude smaller than expected. Both of
these conditions lead to the conclusion that the Fokker - Planck collision term does
not represent the type of collisions that remove thé returning ions in the presheath.
This breakdown is do to the failure of the Fokker - Planck collision term to model
the large angle collisions that take place within the presheath. The Fokker - Planck
term is effective at modeling the collisions present in the center of the plasma but
breaks down in the presheath. The primary mechanism behind clearing out the
_returning ions from within the presheath is not particle diffusion as represented by

small angle deflections but rather the large velocity changes caused by large angle

collisions. Since the Fokker - Planck term models particle collisions that represent
the limit of small angle collisions it is inadequate at describing the mechanisms
controlling the ion velocity distribution moving away from the wall. The solutions
obtained using a Maxwellian distribution by Bissell and Johnson!* and Emmert et
al.8l and those obtained using a ;:ha.rge exchange collision model by Riemann!* and

Maini™ effectively include the large angle collisions since they model the collisions

-
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by instantaneous changes in particle velocity and position. These collision models
do not represent the Coulomb collisions taking place in a fully ionized plasma. They
do not represent the collision processes but only approximate the collisional effects.
This Fokker - Planck presheath model produces a self-consistent and precise
potential structure. The particle velocity distribution in the presheath has the
correct acceleration of ions toward the wall but because the Fokker - Planck collision
term only models the limit of small angle collis;ions it is unable to clear the particle
distribution of returning ions. The effect of not modeling the large angle collisions
is that the particle distribution for returning ions is accurate only in the initial
section of the presheath where the collisional processes are dominated by particle
diffusion. The collisional processes become dominated by the effects of the large”
angle collisions as the interface between the presheath and the Debye sheath is
approached. Only by including a collision term which accounts for these large
angle collisions can a presheath model produce a particle velocity distribution that
accurately models the condition of no returning ions. This study has found that a
presheath model which describes the Coulomb collisions occurring in a fully ionized

plasma must account for both the small angle collisions and the large angle collisions.
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APPENDIX: PROGRAM LISTING

S290880008000008583088048003083840 003000800088 84080888880000088008

¢ THIS PROGRAM WAS WRITTEN BY JEFFREY P. DANSEREAU

. THIS VERSION WAS LAST UPDATED ON 7/17/87

3889888088980 00808888028300830088488038820000888880088000880808808808

THIS PROGRAM IS A TIME DEPENDENT MODEL OF THE SHEATH -
PRESHEATH OF A PLASMA. IT USES A FOKKER-PLANCK COLLISION
TERM WITH ONLY COULOMB COLLISIONS. BELOW IS A LIST OF
THE VARIABLES AND THEIR MEANING

T - DIAGONAL REPRESENTATION OF T MATRIX.1ST IS DIAGONALS.
2ND IS M VEL POS. ;

V - 3-D MATRIX OF V COMPONENTS. 1ST POS. IS F'S, 2ND IS
N PHI POS., 3RD IS M VEL. POS.

VV . 3.D MATRIX OF V VALUES AFTER INVERSION WITH T MATRIX.
POS. ARE SAME AS V MATRIX WITH ADDITIONAL ROW FOR BC'S.

D - 2-D MATRIX OF D VALUES. 1ST POS. IS F'S, 2ND IS M VEL POS.

DD - 2-D MATRIX OF D VALUES AFTER INVERSION WITH T MATRIX

PHI- VECTOR OF PHI VALUES

F - 2-D MATRIX OF DENSITY FUNCTIONS, 1ST POS. IS THE n F'S
THAT ARE BEING USED. (n=N-1). F(1,X)= F0 ECT... THE
2ND POS IS THE M VEL POS.

TSTEP - VALUE OF DELTA T AS TIME IS STEPPED THROUGH

VSTEP - VALUE OF DELTA V AS VEL. SPACE IS STEPPED THROUGH

RTIME - CURRENT VALUE OF NON-DIM. TIME

ETA - CURRENT VEL.

NETA - ETA PARAMETER IN POISSON EQN

TOTE - RATIO OF T TO Te(T OVER Te)

SM - SMALL M(m) IN F-P EQN

BM - BIG M(M) IN F-P EQN

AA -aINF-PEQN

AP -a'INF-PEQN

M - NUMBER OF DIV. IN VEL. SPACE

N . NUMBER OF PHI VALUES

ND - NUMBER OF DIAGONALS IN T MATRIX
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TIME - INTEGER VALUE IN TIME LOOP

TEND - RTIME TO FINISH SIMULATION

L -INTEGER TIME VALUE TO END SIMULATION

FLAG1 - FLAG TO PRINT OR NOT PRINT MATRICES(99 TO PRINT)

FLAG2 - FLAG TO PRINT OR NOT PRINT INTERMEDIATE MATRICES
(99 TO PRINT)

TRBLE - FLAG TO PRINT TROUBLE STATEMENT IF MATRIX IS NOT
INVERTABLE

B,SOLN - INTERMEDIATE VALUES OF VARIOUS FUNCTIONS

X,Y,Z - INTEGER COUNTERS

THIS PROGRAM STEPS THROUGH TIME SOLVING THE BOLTZMANN EQN FOR
VALUES OF THE EXPANDED DENSITY FUNCTION

REAL T(6,8,202),V(6,6,202),B(202),SOLN(202), TEND

REAL VV(8,6,202),D(6,202),DD(6,202), PHI(8),L

REAL F(6,202), TSTEP,RTIME,SM,BM,AA,AP,VSTEP,ETA,NETA,TOTE
REAL FTOTAL(202),50,DU,DUPHI1

INTEGER X,Y,Z,M,N,ND,TIME, TRBLE,FLAG1,FLAG2,FLAG3,P,PSTEP,SKIP

READ IN PARAMETERS AND PRINT THEM

OPEN(UNIT=2,FILE="INITDAT.DAT" STATUS='OLD’)
READ(2,705) M,NETA,TOTE,AA,AP,SM,FLAG3,SKIP,S0
READ(2,707) BM,VSTEP,N,ND,TEND, TSTEP,FLAG1,FLAG2
CLOSE(UNIT=2)

FORMAT (14,1X,F6.4,1X,F8.4,1X,F6.4,1X,F6.4,1X,F6.4,1X,13,1X,

+ 13,1X,F9.4,/)
FORMAT(1X,F6.4,1X,F6.4,1X,14,1X,14,1X,F8.5,1X,F7.5,1X,13,1X,13)
OPEN(UNIT=1,FILE="PHLOUT" STATUS="UNKNOWN’)
OPEN(UNIT=3,FILE='FPSHETH.OUT* STATUS="UNKNOWN’)

me(s,717) 1988800828484 80888880988880008300088288288008C8UsN)

+' "...‘.“..’
FORMAT(A,A)
WRITE(3,711) 'FOKKER - PLANCK SIMULATION OUTPUT’

wmg(3.117) 1800000000848 390280808000493888800008000008880R0800

+ ”““.....!

WRITE(3,710) 'INPUT PARAMETERS’
WRITE(3,715) 'NUMBER OF VEL. STEPS - M"M
WRITE(3,715) '"NUMBER OF PHI VALUES . N',N

- 100




716

710
711
715
720
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WRITE(3,715) "NUMBER OF DIAGONALS IN T MATRIX - ND’,ND
WRITE(3,720) *'VALUE OF ETA IN POISSON EQN - NETA',NETA
WRITE(3,720) 'VALUE OF T OVER TE - TOTE", TOTE

WRITE(3,720) 'SIZE OF EACH VEL. STEP - VSTEP’,VSTEP
WRITE(3,720) 'SIZE OF EACH TIME STEP - TSTEP’, TSTEP
WRITE(3,720) 'VALUE OF ENDING TIME FOR SIMULATION’,TEND
WRITE(3,720) 'VALUE OF A PARAMETER IN F-P EQN - AA'",AA
WRITE(3,720) "VALUE OF A PRIME PARAMETER IN F-P EQN - AP’ AP
WRITE(3,720) 'VALUE OF SMALL M IN F-P EQN - SM",SM
WRITE(3,720) "VALUE OF BIG M IN F-P EQN - BM’,BM

WRITE(3,716) 'FLAG TO PRINT PRIMARY MATRICES(99 TO PRINT)’,
+ '. FLAGI’,FLAG1

WRITE(3,716) 'FLAG MAKE FDATA AND PHIDAT NEW FINAL VALUES’,
+ ’(99 = YES) - FLAG3",FLAG3

WRITE(3,715) *TIME SKIP FOR PRINT OF F FILE - SKIP",SKIP
FORMAT(5X,A,A,2X,13)

WRITE(3,710) * °*

FORMAT(15X,A,//)

FORMAT(8X,A,/)

FORMAT{5X,A,2X,13)

FORMAT(5X,A,2X,F9.5)

57

MAKE NON TIME DEPENDENT QUANTITIES AND INITIAL APPROXIMATIONS

TO F'S, PHI'S, AN THE BC

DU=0.0

DUPHI1=0.0

CALL MAKEF(M,F)

CALL MAKEPHI(N,RTIME,PHI)

CALL TOT(F,FTOTAL,PHILN,M,VSTEP,DU,DUPH11)
TT=0.0
CALL CONSERV(F,VSTEP,TT M)

START MAIN TIME LOOP

101 ..




38
C COMPUTE END LOOP TIME L

L=TEND/TSTEP
PSTEP=0

DO 40 TIME=1,INT(L)+1
o) PRINT RESULTS OF CURRENT TIME STEP

PSTEP=PSTEP+1
IF (TIME.LE.3) GOTO 1000
IF (PSTEP.GE.SKIP) THEN
PSTEP=0
GOTO 1000
ENDIF
GOTO 1001
1000  WRITE(3,350) 'TIME = ', RTIME,"TSTEP =, TIME-1
DO 210 Z=1,N
WRITE(3,250) 'PHI(’,Z-2,") = ’,PHI(Z)
210 CONTINUE
WRITE(3,351) 'DU = ',DU,'DU*PHI(1) = ",DUPHI1
WRITE(3,711) * °*
WRITE(3,275) 'M’,’ETA’,'F0’,'F1’,'F2','F3’,'FTOTAL’
ETA=.5.0
DO 220 X=1,M
WRITE(3,300) X,ETA,F(1,X),F(2,X),F(3,X),FTOTAL(X)
ETA=ETA+VSTEP
220 CONTINUE
1001 WRITE(3,710) ' °’
WRITE(1,813) TIME,RTIME,PHI(1),PHI(2),?HI(3),DU,DUPHI1
813  FORMAT(I3,1X,F7.4,1X,E13.6,1X,E13.6,1X,E13.6,1X,E13.6,
+ 1X,E13.6)
IF {TIME.GT.INT(L)) GOTO 40
WRITE(*,946) 'CURRENTLY IN TIME STEP’, TIME,’OF",INT(L)
FORMAT(5X,A,14,2X,A,14)

MAKE TIME DEPENDENT QUANTITIES T MATRIX, V MATRIX, D MATRIX

aaqQa
3

DO 445 JI=1,2
CALL MAKET(ND,M,F,VSTEP,SM,BM,AA,AP, TSTEP,S0,PHL,N,T
CALL MAKEV(N,M,F,VSTEP,V)
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CALL MAKED(M,F,VSTEP,TSTEP,SM,BM,AA,AP,N,PHI,D)

(o]

INVERT T MATRIX WITH V VECTORS, MAKING VV MATRIX

DO 50 X=1,N-1
DO 60 Y=3,N
DO 70 Z=1M
B(Z)=V(X,Y.Z)
70 CONTINUE
CALL MODIAG(M,ND,T,B,SOLN,TRBLE,X)
IF (TRBLE.EQ.999) THEN
WRITE(3,*) '"MATRIX HAS NO SOLUTION’
TRBLE=0
ENDIF
DO 80 Z=1.M
VV(X,Y,Z)=SOLN(Z)
CONTINUE
CONTINUE
CONTINUE

INVERT T MATRIX WITH D VECTORS, MAKING DD MATRIX

an00gazs

DO 90 X=1,N-1
DO 100 Y=1,M
B(Y)=D(X,Y)
100 CONTINUE
" CALL MODIAG(M,ND,T,B,SOLN,TRBLE,X)
IF (TRBLE.EQ.999) THEN
WRITE(3,*) '"MATRIX HAS NO SOLUTION’
TRBLE=0
ENDIF
DO 110 Y=1,M
DD(X,Y)=SOLN(Y)
110 CONTINUE
CONTINUE

GET NEW F VALUES FROM NEW PHI VALUES

aaoasy

DO 160 X=1,N-1
IF ((JJ.EQ.1).AND.(X.EQ.2)) GOTO 160

- ‘ [03 T




165

180
170

190
160

(o]

445

a0a

‘aaa aoa

acaaagaaa

IF ((JJ.EQ.2).AND.(X.EQ.1)) GOTO 160
DO 168 Z=1,M
F(X,Z)=0.0
CONTINUE
DO 170 Y=3,N
DO 180 Z=1,M
F(X,2)=F(X,Z)+PHI(Y)*VV(X,Y,2)
CONTINUE
CONTINUE
DO 190 Z=1,M
F(X,Z)=F(X,2)+DD(X,2)
CONTINUE
CONTINUE
CALL AVE(F,M,N,JJ)

CONTINUE

GET NEW PHI VALUES

CALL DENSITY(N,M,PHLF,TOTE,VSTEP)

MAKE TOTAL DENSITY

CALL TOT(F,FTOTAL,PHLN,M,VSTEP,DU,DUPHI1)

TT=RTIME+TSTEP
CALL CONSERV(F,VSTEP,TT,M)

INCREASE REAL TIME TO NEXT POSITION
RTIME=RTIME+TSTEP
CONTINUE TIME LOOP

CONTINUE

‘-‘“““““‘.“..“.“‘..lll....‘..

END TIME LOOP

0480048880080 8802008082888000000008800
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250
275

350
351

266
265

268
267

FORMAT STATEMENTS FOR PRINTS

FORMAT(5X,A,14,A,1X,E13.8)
FORMAT(2X,A,2X,A,9X,A,12X,A,12X,A,12X,A,10X,A)
FORMAT(I3,1X,F5.2,1X,E13.6,1X,E13.6,1X,E13.6,1¥ E13.6,1X,E12.5)
FORMAT(5X,A,F7.4,10X,A,15,/)
FORMAT(5X,A,E13.6,5X,A,E13.8)
CLOSE(UNIT=3)
IF (FLAG3.EQ.99) THEN
OPEN(UNIT=4,FILE="FDATA.DAT’,STATUS='UNKNOWN?’)
DO 265 X=1,M
WRITE(4,266) F(1,X),F(2,X),F(3.X),F(4,X)
FORMAT(E13.6,1X,E13.6,1X,E13.6,1X,E13.6)
CONTINUE
CLOSE(UNIT=1)
OPEN(UNIT=8,FILE='PHIDAT.DAT’ STATUS='UNKNOWN’)
DO 267 X=1,N
WRITE(8,268) RTIME
WRITE(8,268) PHI(X)
FORMAT(E13.6)
CCNTINUE
ENDIF
STOP
END

REAL F(6,202),ETA,VSTEP,NETA,TOTE,B,P1,C
INTEGER X,M,Z '
OPEN(UNIT=3,FILE="FDATA.DAT',STATUS="UNKNOWN’)
ETA=-5.0
PRINT*,INPUT M,VSTEP’
READ(*,*) M,VSTEP
N=M-(M-1)/2
DO 10 X=1,N

F(1,X)=EXP(-(ETA**2))

F(2,X)=0.0

F(3,X)=0.0

F(4,X)=0.0

ETA=ETA+VSTEP
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40

30

100

200

10

120
20

CONTINUE
Z=1
DO 30 X=M,N+1,-1
DO 40 Y=1,4
F(1,X)=F(1,2)
CONTINUE
Z=Z+1
CONTINUE
DO 20 X=1,M
WRITE(3,100) F(1,X),F(2,X),F(3.X),F(4,X)
FORMAT(E13.6,1X,E13.6,1X,E13.6,1X,E13.6)
CONTINUE
STOP
END

REAL PHI(6),RTIME
INTEGER N,X
N=5
RTIME=0.0
WRITE(*,*) 'INPUT PHI(-1)’
READ(*,200) PHI(1)
WRITE(*,*) 'INPUT PHI(0)’
READ(*,200) PHI(2)
FORMAT(F10.5)
WRITE(*,*) 'INPUT PHI(1)’
READ(*,200) PHI(3)
DO 10 X=4,N
PHI(X)=0.0

CONTINUE

OPEN(UNIT=9,FILE='PHIDAT.DAT",STATUS='"UNKNOWN’)

WRITE(9,120) RTIME

DO 20 X=1,N
WRITE(9,120) PHI(X)
FORMAT(E13.6)

CONTINUE

RETURN

END
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SUBROUTINE CONSERV/(F,VSTEP,T,M)
REAL F(6,202),F0(202), VSTEP,ZF(202),22F(202), ENER, MOM,DEN, T,ETA
INTEGER X,M
ETA=-5.0
DO 10 X=1,M
FO(X)=F(1,X)
ZF(X)=F(1,X)*ETA
Z2F(X)=ZF(X)*ETA
ETA=ETA+VSTEP
CONTINUE
CALL SIMPS(F0,M,VSTEP,DEN)
CALL SIMPS(ZF,M,VSTEP,MOM)
CALL SIMPS(Z2F,M,VSTEP,ENER)
OPEN(UNIT=9,FILE="CONSERV.OUT",STATUS="UNKNOWN?’)
WRITE(9,100) T,DEN,MOM,ENER
FORMAT(2X,F 8.5,1X,E13.6,1X,E13.6,1X,E13.6)
RETURN
END

SUBROUTINE DENSITY(N,M,PHLF,TOTE,VSTEP)
REAL F(6,202),PHI(8), TOTE,VSTEP,G(202),R(4),NO(6)
INTEGER M,N,X,Y
DO 10 X=1,N-1

DO 20 Y=1,M

G(Y)=F(X,Y)

CONTINUE

CALL SIMPS(G,M,VSTEP,NO(X))
CONTINUE
R(1)=NO(2)/NO(1)
R(2)=NO(3)/NO(1)
R(3)=NO(4)/NO(1)
PHI(3)=-PEI(2)*R(1)/(2.0°TOTE)
PHI(4)=PHI(2)* ((((PHI(3)/PHI(2))**2)*((2.0°TOTE)**2)/2.0)-R(2))
+  /(2.0°TOTE)
PHI(S)=PHI(2)*((((2.0°TOTE)**2)*PHI(3)* PHI(4)/(PHI(2)**2))
+ -(((2.0°TOTE)**3)*((PHI(3)/PHI(2))**3)/6.0)-R(3))/(2.0TOTE)
RETURN
END
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SUBROUTINE MAKEF(M,F)
REAL F(6,202)
INTEGER X,M
OPEN(UNIT=8,FIL .="FDATA.DAT" STATUS="UNKNOWN’)
DO 10 X=1,M
READ(8,100) F(1,X),F(2,X),F(3X),F(4,X)
FORMAT(E13.6,1X,E13.6,1X,E13.6,1X,E13.6)
CONTINUE
RETURN
END

SUBROUTINE MAKEPHI(N,RTIME,PHI)
REAL PHI(6),RTIME
INTEGER N,X
OPEN(UNIT=9,FILE="PHIDAT.DAT",STATUS="UNKNOWN’)
READ(9,120) RTIME
DO 20 X=1,N
READ(9,120) PHI(X)
FORMAT(E13.6)
CONTINUE
RETURN
END

SUBROUTINE MAKEV(N,M,F,VSTEP,V)
REAL F(s,202),V(6,6,202),VSTEP,FD1(8),Z,ETA
INTEGER NMX,Y,R,S '
ETA=-5.0
DO 10 X=1,M
CALL FDi(F,N,MX,VSTEP,FD1)
IF ((X.EQ.1).0R.(X.EQ.M)) THEN
DO 15 Y=x1,N-1
DO 17 R=3,N
V(Y,R,X)=0.0
CONTINUE
CONTINUE
ELSE
DO 20 Y=1,N-1




Z=1.0
S=1
DO 30 R=3,N
IF (S.GT.(Y-1)) THEN
V(Y,R,X)=0.0
ELSE
V(Y,R X)=-Z*FD1(Y-R+2)
ENDIF
S=8+1
Z=2+1.0
30 CONTINUE
20 CONTINUVE
ENDIF
ETA=ETA+VSTEP
10 CONTINUE
RETURN
END

SUBROUTINE MAKED(M,F,VSTEP, TSTEP,SM,BM,AA,AP,N,PHI,D)
REAL VSTEP,TSTEP,SM,BM,AA,AP,F(6,202),D(6,202),A(6,202),PHI(S)

REAL FD1(s),FD2(6),AH(202),BH(202),B(6,202)
REAL ETA,GD1,GD2

INTEGER N,M,X,Y,Z

DO 10 X=1,N-1

CALL GETAB(F,VSTEP,M,SM,BM,AA,AP,AH,BE,X)

DO 15 Y=1.M
A(X,Y)=AR(Y)
B(X,Y)=BH(Y)

15 CONTINUE
10 CONTINUE
DO 17 Y=1,N-1
D(Y,M)=0.0
D(Y,1)=0.0
17 CONTINUE
ETA=-5.0+VSTEP
DO 20 X=2.M-1

DO ‘w: . = N-1
L, 7 X)=0.0
00 N Z=1Y
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IF (Z.LE.Y-1) THEN
GD2=(A(Z+1,X+1)*F(Y-Z,X+1)-2.0°
+ A(Z+1X)*F(Y-Z,X)+A(Z+1,X-1)*F(Y-Z,X-1))/(VSTEP**2)
GD1=(B(Z+1,X+1)*F(Y-Z,X+1)-B(Z+1
+ X-1)*F(Y-Z,X-1))/(2.0°VSTEP)
D(Y,X)=D(Y,X)+GD2+GD1
ENDIF
CONTINUE
D(Y,X)=D(Y,X)+F(Y,X)/TSTEP
CONTINUE
ETA=ETA+VSTEP
CONTINUE
RETURN
END

SUBROUTINE FD1(F,N,M,X,VSTEP,FD1)
REAL F(8,202),FD1(8),VSTEP
INTEGER Y,X,N,M
DO 10 Y=1,N-1
IF (X.LE.2) THEN
FD1(Y)=(-F(Y,X+2)+4.0°F(Y,X+1)-3.0°F(Y,X))/(2.0°VSTEP)
ELSE IF (X.GE.M-1) THEN
FD1(Y)=(3.0*F(Y,X)-4.0°F(Y,X-1)+F(Y,X-2))/(2.0°VSTEP)
ELSE .
FD1(Y)=(F(Y,X+1)-F(Y,X-1))/(2.0°VSTEP)
ENDIF
CONTINUE
RETURN
END

SUBROUTINE MAKET(ND,M,F,VSTEP,SM,BM,AA, AP, TSTEP,S0,PHLN,T)
REAL VSTEP,TSTEP,SM,BM,AA,AP,F(6,202),T(6,8,202),A(202)

REAL ETA,B(202),PHI(s),P

INTEGER ND,M,X,Y,N,2

CALL GETAB(F,VSTEP,M,SM,BM,AA,AP,A,B,1)

P=0.0

DO 5 Z=1,N-1

- /10
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ETA=-5.0
DO 10 X=1,M
IF ((X.EQ.M).OR.(X.EQ.1)) THEN
T(2,2,X)=0.0
T(2,3,X)=1.0
T(Z,4,X)=0.0
ELSE
T(2,2,X)=(((-A(X~1)/ VSTEP)+B(X-1)/2.0)/ VSTEP)
T(2,2,X)=T(2,2,X)-PHI(1)/(2.0°VSTEP)
T(Z,3,X)=1.0/TSTEP+(2.0*A(X)/(VSTEP**2))
T(2,3,X)=T(2,3,X)+PHI(2)*P*ETA
T(2,4,X)=((-A(X+1)/VSTEP-B(X+1)/2.0)/VSTEP)
T(Z,4,X)=T(2,4,X)+PHI(1)/(2.0°VSTEP)
ENDIF
ETA=ETA+VSTEP
10 CONTINUE
P=P+1.0
5 CONTINUE
RETURN
END

SUBROUTINE GETAB(F,VSTEP,M,SM,BM,AA,AP,A,B,Y)
REAL A(202),B(202),AA,AP,F(6,202), VSTEP,Z,SM,BM, E(202)
REAL P(202),H(202),G(202),K(202),DB,DA,S1,52,53,54,S5
INTEGER M,X,Y,N
Z=-5.0
DO 10 X=1,M _
CALL FINDA(F,Z,VSTEP,AA,AP,M,A(X),Y)
CALL FINDB(F,2,VSTEP,AA,AP,SM,BM,M,B(X),Y)
Z=Z+VSTEP
10 CONTINUE
ETA=-5.0
DO 20 X=1,M
E(X)=B(X)*F(Y,X)
G(X)=A(X)*F(Y,X)
K(X)=ETA*B(X)*F(Y,X)
P(X)=ETA*F(Y,X)
E(X)=F(Y,X)
ETA=ETA+VSTEP

- M e
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CONTINUE

CALL SIMPS(H,M,VSTEP,S1)

CALL SIMPS(G,M,VSTEP,S2)

CALL SIMPS(K,M,VSTEP,S3)

CALL SIMPS(P,M,VSTEP,S4)

CALL SIMPS(E,M,VSTEP,SS5)

IF (S5.EQ.0.0) RETURN

DB=.S1/S5

DA=-(S2-S3-DB*S4)/S5

DO 30 X=1,M
B(X)=B(X)+DB
A(X)=A(X)+DA

CONTINUE

RETURN

END

SUBROUTINE FINDA(F,Z,VSTEP,AA,AP.M.A,Y)
REAL F(6,202),Z,VSTEP,AA,AP,A,ETA,SOLN,H(202),FDZ
INTEGER X,M,Y
ETA=.5.0
DO 10 X=1,M
CALL FD2(F,M,X,VSTEP,FD2,Y)
H(X)=FD2*ABS(ETA-2)
ETA=ETA+VSTEP
CONTINUE
CALL SIMPS(H,M,VSTEP,SOLN)
A=(SOLN®AA)/(2.0*AP)
RETURN
END

SUBROUTINE FINDB(F,Z,VSTEP,AA,AP,SM,BM,M,3B,Y)
REAL F(6,202),Z,VSTEP,AA,AP,B,ETA,G2,SOLN
REAL J(202),FD3,SM,BM
INTEGER X,M,Y
ETA=-5.0
DO 10 X=1,M
CALL FD3(F,M,X,VSTEP,FD3,Y)
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J(X)=FD3*ABS(ETA-2)
ETA=ETA+VSTEP
CONTINUE

'CALL SIMPS(J,M,VSTEP,SOLN)

B=~(AA/AP)*(SM/(2.0°BM))*SOLN
RETURN
END

SUBROUTINE SIMPS(F,N,H,RESULT)

REAL F(202),H,RESULT

INTEGER N,NPANEL,NHALF,NBEGIN,NEND

NPANEL=N-1

NHALF=NPANEL/2

NBEGIN=1

RESULT=0.0

IF ((NPANEL-2°NHALF).NE.0) THEN
RESULT=3.0"H/8.0°(F(1)+3.0°F(2)+3.0°F(3) +F(4))
NBEGIN=4
IF (N.EQ.4) RETURN

ENDIF

RESULT=RESULT+H/3.0*(F(NBEGIN)+4.0*F(NBEGIN+1)+F(N))

NBEGIN=NBEGIN+2

IF (NBEGIN.EQ.4) RETURN

NEND=N-2

DO 10 I=NBEGIN,NEND,2
RESULT=RESULT+H/3.0°(2.0°F(I)+4.0°F(1+1))

CONTINUE .

RETURN

END

SUBROUTINE FD2(F,M,X,VSTEP,FD2,Y)

REAL F(6,202),FD2,VSTEP

INTEGER X,M,Y

IF (X.LE.1) THEN
FD2=(F(Y,X+2)-2.0°F(Y,X+1)+F(Y,X))/(VSTEP**2)

ELSE IF (X.GE.M) THEN
FD2=(F(Y,X)-2.0°F(Y,X-1)+F(Y,X-2))/(VSTEP**2)




ELSE
FD2=(F(Y,X+1)-2.0°F(Y,X)+F(Y,X-1))/(VSTEP**2)

ENDIF

RETURN

END

SUBROUTINE FD3(F,M,X,VSTEP,FD3,Y)

REAL F(6,202),FD3,VSTEP

INTEGER X,M,Y

IF (X.LE.2) THEN
FD3=(F(Y,X+3)-3.0°F(Y,X+2)+3.0°F(Y,X+1)-F(Y,X))/(VSTEP**3)

ELSE IF (X.GE.M-1) THEN
FD3=(F(Y,X)-3.0°F(Y,X-1)+3.0°F(Y,X-2)-F(Y,X-3))/(VSTEP**3)

ELSE
FD3=(F(Y,X+2)-2.0°F(Y,X+1)+2.0°F(Y,X-1)-F(Y,X-2)})/

+  (2.0°(VSTEP**3))

ENDIF

RETURN

END

SUBROUTINE MODIAG(M,D,MATRIX,C,SOLN,TRBLE,N)
REAL A(8,202),B,SOLN(202), MATRIX(,8,202),C(202)
INTEGER M,D,W X,Y,Z,TRBLE,N,], MN1
TRBLE=0
DO 10 X=1,D+2

DO 20 Y=1,M
IF (X.EQ.D+2) THEN
AX,Y)=C(Y)
ELSE
A(X,Y)=MATRIX(N,X,Y)
ENDIF

20 CONTINUE

10 CONTINUE
DO 30 I=2,M

A(2,])=A(2,])/A(3,1-1)
A(3D)=A(3,)-A(2,1) *A(4,1-1)
A(S,])=A(5,1)-A(2,1)*A(S,1-1)
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CONTINUE
DO 80 X=1,M
IF (A(3,X).EQ.0) THEN
PRINT®*,’"MATRIX HAS NO SOLUTION’
TRBLE=999
GOTO 999
ENDIF
CONTINUE
MN1=M.1
A(S,M)=A(5M)/A(3,M)
DO 40 [=MN1,1,-1
A(S,I)=(A(S,1)-A(4,])*A(5,1+1))/A(3,])
CONTINUE
DO 50 X=1,M
SOLN(X)=A(5,X)
CONTINUE
RETURN
END

SUBROUTINE AVE(F,M,N,JJ)

REAL F(6,202)

INTEGER X,N,M,2,J]

DO 443 Z=1,N-1
IF ((J1.EQ.1).AND.(2.EQ.2)) GOTO 443
IF ((J1.EQ.2).AND.(Z.EQ.1)) GOTO 443
DO 444 X=2,M-1

F(2,X)=(.025*F(2,X-1)+F(Z,X)+.025°F(Z,X+1))/1.05
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE TOT(F,FTOTAL,PHLN,M,VSTEP,DU,DUPHI1)
REAL F\(6,202), FTOTAL(202),PHI(8),VSTEP,G(202),NO(6),DU
REAL X1,X2,TOL,F1,F2,XERR

INTEGER M,N,X,Y,NLIM

L=(M+1)/2

- IS -
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DO 10 Xa=i,N-1
DO 20 Y=1,L
G(Y)=F(X,Y)
CONTINUE
CALL SIMPS(G,L,VSTEP,NO(X))
CONTINUE
X1=0.0
X2=1.0E6
TOL=.0001
NLIM=50
CALL FCN(NO,X1,N,F1)
CALL FCN(NO,X2,N,F2)
IF (F1*F2.GT.0.0) THEN
X2=X2*10.0
IF (X2.GT.1.0E15) THEN

WRITE(*,*) 'NO SIGN CHANGE UP TO 1E15’

RETURN
ENDIF
GOTO 30
ENDIF
DO 40 J=1,NLIM
DU=(X1+X2)/2.0
CALL FCN(NO,DU,N,FR)
XERR=ABS(X1-X2)/2.0
IF (XERR.LE. TOL) GOTO 1000
IF (ABS(FR).LE.TOL) GOTO 1000
IF (FR*X1.GT.0.0) THEN
X1=DU
F1=FR
ELSE
X2=DU
F2=FR
ENDIF
CONTINUE
WRITE(*,*) 'NLIM EXCEEDED’
RETURN

1000 DO 30 X=1,M

FTOTAL(X)=0.0
DO 60 Y=1,N-1

FTOTAL(X)=FTOTAL(X)+DU**(Y-1)*F(Y,X)
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APPENDIX B - The TEC program
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. C DOS FILE TECINIT.FOR
CRARRR AR R AR AR R KRR RE R R AR AR AR R KRR AR R AR KRR AR R KRR KRRRAAAR KRR KA
C TEC DATA INITIALIZATION ACCESS CODE
Cc WRITTEN BY GREGORY L RIDDERBUSCH
(o AUGUST 1986

o e ey Y R R R T iRl
REAL ARRAY (9)
INTEGER IPARAM(S)
WRITE (*,103)
OPEN (UN1T=2,FILE=’PINDATA.DAT’ , STATUS='OLD’)
READ (2,101) (ARRAY(I),I=1,9)
READ (2,102) (IPARAM(I),I=1,5)
10 WRITE(*,104) (ARRAY(I),I=1,7)
WRITE (*,105)
READ (*, *) IVALUE
IF (IVALUE .EQ. 0) THEN
GOTO 20
ELSE
WRITE(*,106)
READ (*, *) VALUE
ARRAY (IVALUE) =VALUE
GOTO 10
ENDIF
20 WRITE(*,107) (IPARAM(I),I=1,5)
WRITE(*,110) ARRAY(8),ARRAY(9)
WRITE(*,105)
READ (*, *) IVALUE
IF (IVALUE .EQ. 0) THEN
GOTC 390
ELSE
WRITE (*,108)
IF (IVALUE .EQ. 6 .OR. IVALUE .EQ. 7) THEN
READ (*, *) VALUE
ARRAY (IVALUE+2) =VALUE
GOTO 20
ELSE
READ (*, *) INEW
IPARAM (IVALUE) =INEW
GOTO 20
ENDIF
ENDIF
30 REWIND (2)
WRITE(2,101) (ARRAY(I),I=1,9)
WRITE(2,102) (IPARAM(I),I=1,5)
CLOSE (2)
WRITE(*,109)
STOP

101 FORMAT(F8.1/F8.1/F6.3/F6.3/F6.3/F6.3/F7.2/F5.2/F6.1)

102 FORMAT(I1/I1/13/13/13)

103 FORMAT (1K, / #** XXX KA AR KRR KRR A ARK KRR RARRRARRRRRRAARS [
&’ TEC OPERATING CONDITIONS’/

GLX, P AR KRR KRR RRRR IR KRR KRR A RRK KRR AR AR )

104 FORMAT (//4X,’ CURRENT CONVERTOR OPERATING SETTINGS:’//
&7X,’1. EMITTER TEMPERATURE: ’',F8.1,’ KELVIN’,/
&7X,’2. COLLECTOR TEMPERATURE: ‘,F8.1,’ KELVIN’,/
&§7X,’3. EMITTER WORK FUNCTION: 'y,F6.2,' EV'/

&7X,’4. COLLECTOR WORK FUNCTION: ',F6.2,’ EV'/

&7X,’S5. CONVERTOR PRESSURE: ', F6.2,’ TORR'/
&7X,’6. GAP THICKNESS: ', F6.2,' MM’/
i€

J-------------.-----------.-------i



-/

&7X,'17. OPERATING CURRENT: ',F7.2,’ AMPS/CM~2')
105 FORMAT (/4X,’ENTER ID NUMBER OF VALUE TO BE CHANGED, 0=NONE: ')
106 FORMAT (4X,/ENTER NEW OPERATING SETTING: ‘)
107 FORMAT (//4X,’'CURRENT TEC FUNCTION SETTINGS:’//

&7X,’1. DIAGNOSTIC LEVEL: ’,I3,’ (0-RESTRICTED OUTPUT)’/

el (1-FULL OUTPUT)‘/

&§7X, (2-ENABLE SHEATH DIAGNOSTICS)'/
67X, (3-ENABLE DOT DIAGNOSTICS)'/
&7X,’2. RESTART SEQUENCE: ‘,I3,’  (0-DEFAULT STARTUP VALUES)'’/
&7X, (1-RESTART WITH PREVIOUS VALUES)’/

&7X,’3. STEPS BETWEEN PRINTS: ’,I3/
&7X,’4. POINT DENSITY: ’,I3,’ (11,21,31,...151)"/
&7X,’5. LOTUS SKIP FACTOR: ’/,I3,’ (1..99)')

108 FORMAT (4X,’ENTER NEW FUNCTIONAL SETTING: ‘)
109 FORMAT (1X, ' XX AR AR A XK AR KRR KKK KKK AR R KKKKRRRRRRRRKR KKK/ /

&’ "/
&lx"****************************************t*’)

110 FORMAT (7X,’6. TIME STEP: ',F5.2,
&' (OQ1'002'0.310041005)'/7Xl’7o END TIME: ’I
&FG.I" (1.0’2-0'0-0’10.0)’)
END




o DOS FILE PRED1.FOR
CR AR KRR KR KRR IR R R KK RR R AR KRR AR R AR AR AR AR A RR KK AR KK RR KKK KRR KRRk K
o PROGRAM TEC

c**ti***************t******************************************************t

REAL CNE, ENE,ECHI,CCHI,EALPHA,CALPHA, LAMNEB, LAMTAU

REAL DTP, T2, AN,AT,CN,CT, BN, BT, RE, KN, TCHAR, PN, DT

REAL SMR, LAMDAR, NR, TE, TC, ENR, I, ARECN, EGNDB, ELOSSB, NNR

REAL TAU(0:150) ,NEB(0:150) ,DELTAT, SN, ST,PI,CA,CSAHA,DZ

REAL DTAUNDZ,MUI(0:150),RMUR,TAUN(0:150),EMISS, TIME2, LCCHI
REAL NDOT1(0:150),TDOT1(0:150),NNB(0:150), TIME1,JNET,CV(0:150)
REAL FYEN, IVD, IKN, EGRADA,PHIB,EWF,CWF,D,ESOURCE (0:150)

INTEGER N, IDEN,EFIX,CFIX,CHKDOT, ICOUNT,NSTEPS,C,PC,LS,LC,EQ,EC

C
COMMON /PRED/ CA,CSAHA,DT,DTAUNDZ,DZ,EGNDB,ELOSSB, ENR, I, IDEN, KN
COMMON /PRED/ LAMDAR,LAMNEB, LAMTAU,MUI,N,NNB,NNR,NR,PI,RE, RMUR
COMMON /PRED/ TAUN,EFIX,CFIX,CHKDOT,FYEN,ENE,ECHI,CCHI,CNE
COMMON /PRED/ EALPHA,CALPHA,CV,ESOURCE, LCCHI

c
data nsteps /1/

C

OPEN (UNIT=2,FILE=’/PINDATA.DAT’,STATUS=’0Q0LD’)

OPEN (UNIT=4,FILE=’EXQUT.DAT’, STATUS='UNKNOWN’)

OPEN (UNIT=7,FILE=’LOTUS1.DAT’, STATUS='UNKNOWN’)

OPEN (UNIT=8,FILE=’/PREDRES.DAT’,STATUS=’0OLD’)

OPEN (UNIT=9,FILE=’PRNTOUT.DAT’, STATUS='UNKNOWN’)
C....SET ABBREVIATED PRNTDAT SAMPLING POINTS WITH PC
C...SET LOTUS SKIP COUNTER WITH LC
o

CALL INITIAL(TE, TC,EWF,CWF,PN,NSTEPS,DTP, T2, AN, AT,

&CN, CT, BN, BT, TCHAR, SMR, ARECN, DELTAT, SN, ST, TAU, NEB, LS, pc)
c=pcC

LC=LS

EO=100*LS

EC=EQ

IF (CHKDOT .EQ. 3)

& OPEN (UNIT=9,FILE=’D:PDOTDIAG.DAT’, STATUS=' UNKNOWN’)
IF (CHKDOT .GT. 1)

& OPEN (UNIT=11,FILE='/D:PSTHDIAG.DAT’,STATUS=’UNKNOWN’)

EGRADA=(Q .0
ICALCS=INT (T2/DTP+0.001)
WRITE (*,76)
DO 30 ICOUNT=0,ICALCS
WRITE(*,77) (icount),100* (icount)/ICALCS
TIMEl= (icount) *DTP
TIME2= (icount+1l) *DTP
CALL PREDCOR(TIMEI,TIMEZ,TAU,NEB,NSTEPS,TE,TC,TDOTI,NDOTI,
& PN,ARECN,TCHAR,AN,AT,BN,BT,CN,CT,IVD,SMR,EGRADA,PHIB,JNET)
VOUT=EWF + (PHIB + IVD/I + LCCHI)*TE/11600 - CWF
IF (C .EQ. PC) THEN
WRITE (9,67) TIME1l,VOUT
IF (CHKDOT .EQ. 0) THEN
WRITE (9,70)
WRITE (9,71) (I1,NEB(Il),TAU(Il),Il=1,N)
ELSE
EMISS=ENR/NEB (1)
WRITE (9,72) ENE, ECHI,EALPHA,CNE, LCCHI+CCHI, CALPHA, PHIB,
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& IVD/1,EMISS
WRITE(9,73) (I1,NDOT1(Il),NEB(Il),
& TDOT1(Il),TAU(Il),I1=0,N+1)
ENDIF
IF (EFIX .EQ. 1) WRITE(9,74)
IF (CFIX .EQ. 1) WRITE(9,75)
C=0
ENDIF
c=c+l
IF (LC .EQ. LS) THEN
WRITE(7,78) TIME1l,VOUT,ENE, JNET,ECHI,CCHI, EALPHA, CALPHA,
& PHIB,IVD/I,EMISS,NEB(1),NEB(11l),TAU(1),TAU(11)
LC=0
ENDIF
LC=LC+1 .
IF (EC .EQ. EO) THEN
WRITE (4,*) TIME1l
WRITE(4,71) (I1,NEB(Il),TAU(Il),I1l=1,N)
EC=0
ENDIF
EC=EC+1
CONTINUE

C**#**QUTPUT STARTUP VALUES TO PREDRES.DAT

67
68
69
70

n
72

WRITE (8, 69) ENE,CNE,ECHI,CCHI,EALPHA,CALPHA,N
WRITE(8,68) (NEB(I1l),TAU(Il),Il=Q,N+1)

REWIND (8)

CLOSE (8)

STOP

FORMAT(//,'RESULTS AT TIME = ’/,F8.2,4X,’OPERATING VOLTAGE=’,F6.3)
FORMAT (2F8.3)

FORMAT(F9.4/F9.4/F8.3/F8.3/F9.4/F9.4/13)

FORMAT (/3X,’ # NEB (#) TAU(#) '/

D ")

FORMAT (3X,13,4X,F6.3,7X,F5.2)

FORMAT (/3X,’ENE =’,F8.3,4X,/ECHI=',F8.3,4X, 'EALPHA=’ ,F8.,3/
&3X,’CNE =’ ,F8.3,4X,’CCHI=' ,F8.3,4X,’ CALPHA=' ,F8.3/

&3X,’PHIB=’ ,F8.3,4X,'VD =’,F8.3,4X,’EMISS =’,E8.3/

&/3X,” # NDOT (#) NEB (#) TDOT (#) TAU($)’,

&/3X,’ == emmmmemc e cc et e c e e e e ")

FORMAT (3X,I13,4X,F7.4,4X,F6.3,7X,F7.4,4X,F5.2)

FORMAT (' ***AT LEAST ONE UNPHYSICAL EMITTER BC WAS INVOKED.’)
FORMAT (* ***AT LEAST ONE UNPHYSICAL COLLECTOR BC WAS INVOKED.’)
FORMAT (/1X,’ TEC CALCULATIONS BEGIN...(WAIT)...’)
FORMAT (4X,’ ITERATION #’,13,’ COMPLETION--',I3,’ %’)

FORMAT (16E13.6)

END

CRRRA AR AR AR RN R AR AR AR AN AR RN R KRR KRR R A AR RARRA AR AR R R R AR ARk k ko kodkhkkkw

SUBROUTINE PREDCOR(T1, T2, TAU,NEB,NSTEPS,TE, TC, TDOT1,NDOT1,
+ PN, ARECN, TCHAR, AN, AT, BN, BT, CN, CT, IVD, SMR, EGRADA, PHIB, JNET)

CRAERRR e R R R RN R RARNRRRNARRRR A AR RARRARNARNRA R AR AN N R R AR ARk Rk Ak Ak kkhkk ko

REAL T1,TZ2,DT,AN,AT,BN,BT,CN,CT, IVD, LAMTAU, LAMNEB, CNE
REAL TAU(0:150),NEB(0:150), TDOT1(0:150) ,NDOT1(0:150),ENE
REAL ECHI,CCHI,EALPHA,CALPHA,MUI(0:150),I,DZ, TCHAR,LCCHI
REAL TE, TC,DTAUNDZ, PN, ENR, NR, EGNDB, ELOSSB, RE, SMR, LAMDAR
REAL RMUR, KN,NNR, ARECN,PI,CA,CSAHA,NNB(0:150), TAUN(0:150)
REAL MSOURCE(0:150) ,ESOURCE(0:150),CVv(0:150) ,MUEA(0:150)
REAL NDOT2(0:150),TDOT2(0:150), TTILDA(0:150),NTILDA(0:150)
REAL J,IIVD,AVD,FYEN, EGRADA,PHIB, JNET

1\




INTEGER N, CFIX,EFIX, IDEN, CHKDOT,NSTEPS

C
COMMON /PRED/ CA,CSAHA,DT,DTAUNDZ,DZ,EGNDB,ELOSSB, ENR, I, IDEN, KN
COMMON /PRED/ LAMDAR, LAMNEB,LAMTAU,MUI,N,NNB,NNR,NR,PI,RE, RMUR
COMMON /PRED/ TAUN,EFIX,CFIX,CHKDOT,FYEN,ENE,ECHI,CCHI,CNE
COMMON /PRED/ EALPHA,CALPHA,CV,ESOURCE,LCCHI

of

Cr**xx*HANDLE EXCEPTIONAL CONDITIONS
DZ=1.0/ (N-1)
DT=(T2-T1) /NSTEPS
CFIX=0
EFIX=0
C**x***SET NEUTRAL TEMPERATURE AND DENSITY
IF (TE.EQ.TC) THEN
DO 10 I1l=0,N+1
TAUN(I1)=1.0
10 CONTINUE
ELSE
DO 20 I1=0,N+1
TAUN(I1)=1.0+(TC/TE-1.0)*(I1-1.0)/(N-1)
20 CONTINUE
ENDIF
NNR=965.5E16*PN/TE
DO 30 I1=0,N+1
NNB(I1)=1.0/TAUN(I1)
30 CONTINUE
DTAUNDZ=TAUN (N) -TAUN (1)
Cx*x«*SET TRANSPORT PARAMETERS
RMUR=LAMDAR* SMR
DO 40 I1=0,N+1
MUI (I1)=SQRT (TAUN(I1))
40 CONTINUE
Cx***x*SET IONIZATION AND SAHA PARAMETERS
CA=0.41283*ARECN*TCHAR* (NR/1.0E14) **2* (TE/1500) ** (~4.5)
CSAHA=LOG((1.4027E20*NNR/NR/NR) * (TE/1500) **1.5)

DO 70 ICOUNT=0,NSTEPS-1
Crwme=- PREDICTOR STEP
IF (CHKDOT.EQ.3) WRITE(9,81)
CALL DOT (NDOT1, TDOT1,NEB, TAU, EGRADA, PHIB, JNET)
DO 45 I1=0,N+1
NTILDA (I1)=NEB(I1)+AN*DT*NDOT1 (I1)
TTILDA(I1)=TAU(I1l)+AT*DT*TDOT1(Il)
45 CONTINUE
Comem- CORRECTOR STEP
IF (AN.EQ.0.0.AND.AT.EQ.0.0) THEN
DO 50 Il=0,N+1
NDOT2(I1)=0.0
TDOT2(I1)=0.0
50 CONTINUE
GOTO 55
ELSE
IF (CHKDOT.EQ.3) WRITE(9,82)
CALL DOT (NDOT2, TDOT2,NTILDA, TTILDA, EGRADA,PHIB, JNET)
ENDIF
55 DO 60 Il=0,N+1
NEB (I1)=NEB(Il)+DT* (BN*NDOT1 (I1l)+CN*NDOT2(Il))
TAU(I1)=TAU(I1)+DT*(BT*TDOTL1 (I1)+CT*TDOT2(I1l))
60 CONTINUE
70 CONTINUE

| AL
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, Cx****UPDATE TIME DERIV.S, IMAGE POINTS, AND FIND PLASMA POWER GAIN

15

81
83

CV(0)=0.0

CV(N+1)=0.0

ESOURCE (0) =0.0

ESOURCE (N+1)=0.0

IF (CHKDOT.EQ.3) WRITE(9,83)

CALL DOT (NDOT1, TDOT1,NEB, TAU, EGRADA, PHIB, JNET)

IIVD=0.0

DO 75 I1=2, (N-1)

IIVD=IIVD+(ESOURCE (I1)-CV(I1)*TDOT1(I1))

CONTINUE

AVD=0.5* (ESOURCE (1) -CV (1) *TDOT1 (1) ) +0.5* (ESOURCE (N) -CV (N)
+ *TDOT1 (N) )

IVD= (AVD+IIVD) *DZ+2.0*I* (TAU (1) ~TAU (N) ) ~ (NEB (1) *ENE/KN)
+ * (TAU (1) -1)

RETURN

FORMAT (//,’CALL DOT FOR FIRST TIME.’,//)
FORMAT (//,’CALL DOT FOR SECOND TIME.’,//)
FORMAT (//,’CALL DOT FOR LAST TIME.’,//)
END

123




o

DOS FILE PRED2.FOR

C***i********************************************t***************i*t*t*****t

SUBROUTINE DOQT (NEBDOT, TAUDOT, NEB, TAU, EGRADA, PHIB, JNET)

c**********ﬁ*******************************************t***t*********t****t*

REAL A,ALPHA(0:150),BETA(0:150),CA,CALPHA,CCHI,CDETA,CNE, SIGMA
REAL CTETA,CTZ,CV(0:150),CONVECT,D21B,D32B,DT,DZ,DGDU, DELU

REAL DETAP,DTAUNDZ,ESOURCE(0:150),ELOSSB,EGNDB,ETZ,ETETA, DELTAU
REAL ENE,ECHI,ENR,F (15),FYEN, GAMMAP, GAMMAM, GU, I, IB,K(0:150)
REAL LAMTAU, LAMDAR, LAMNEB,MUI(0:150),MSOQURCE(0:150),MUISOLD
REAL MURSOLD,MUIS,MURS,MUEA(0:150),NR,NNR,NEB(0:150),NBCOA

REAL NBC1lA,NBC1B,NBC1C,NES2,NNB(0:150) ,NUE,NA(0:150),NB(0:150)
REAL NEBU(0:150),ND(0:150),NS(0:150),NEBDOT(0:150) ,NEBA(0:150)
REAL NEBV(0:150),PC(0:150),PI1,PB,PBP,POHMIC,PO, QKP, QKM, RE, RMUR
REAL TAU(0:150),TAUN(0:150), TAUDOT (0:150),TA(0:150),TB(0:150)
REAL TS(0:150),TAUA(0:150),TAUB(0:150), TAUC(0:150), TAUV(0:150)
REAL TBCOB, TBCOC, TBClA, TBC1B, TBC1C,U,CSAHA,DETA, EALPHA, KN, KDE
REAL NEBB(0:150), TAUU(0:150) ,NEBC(0:150) ,NC(0:150) ,NBCOB, LCCHI
REAL NBCOC,TC(0:150),TBCOA, JNET, SMR, EGRADA, PHIB, BIGU, JRC, CGRADA
INTEGER CFIX,EFIX,CHKDOT,CFLAG

COMMON /PRED/ CA,CSAHA,DT,DTAUNDZ,DZ,EGNDB,ELOSSB, ENR, I, IDEN, KN
COMMON /PRED/ LAMDAR, LAMNEB, LAMTAU,MUI,N,NNB,NNR;NR,PI,RE, RMUR
COMMON /PRED/ TAUN, EFIX,CFIX,CHKDOT,FYEN, ENE,ECHI,CCHI,CNE
COMMON /PRED/ EALPHA,CALPHA,CV,ESOURCE, LCCHI

F(1)=5.74E-3 -
F(2)=1.40E-3
F(3)=2.3
F(4)=0.2
F(5)=2.70E-2
F(6)=5.74E-3
F(7)=4.24E-2
F(8)=2.82
F(9)=0.0
F(10)=11.607
F(11)=0.0
F(12)=27.04

Cx***+SET THERMAL & ELECTRICAL CONDUCTIVITIES AT O+ (E) & 1- (C)

10

20

IF(TAU(1) .LT.0.1) THEN
TAU(1)=0.1
EFIX=1

ENDIF

IF (TAU(N) .LT.0.1) THEN
TAU(N)=0.1
CFIX=1

ENDIF

IF (RE.EQ.0.5) THEN
DO 10 Il=0,N+1
MUEA (I1)=TAUN(I1)
CONTINUE

ENDIF

IF(RE.EQ.0.0) THEN
DO 20 I1=0,N+1
MUEA (I1) =TAUN(I1l)/SQRT (TAU(I1))
CONTINUE

ENDIF

IF(RE.EQ.~0.5) THEN
DO 30 Il1=0,N+1
MUEA (I1)=TAUN(I1)/TAU(I1)




30 CONTINUE
ELSE
DO 40 Il1=0,N+1
MUEA (I1)=TAUN(I1)* (TAU(I1)**(RE-0.5))
40 CONTINUE
ENDIF
DO 50 I1=0,N+1
K(I1l)=((RE+2.0) /FYEN) *MUEA (I1) *NEB(I1) *TAU(Il)
PC(I1)=NEB(I1l)* (TAU(I1l)+TAUN(Il))
50 CONTINUE
DETA=ALOG (K(2) /K(1))*DZ/ (K(2)-K (1))
DETAP=ALOG (K (2) /K (1)) *D2/ (K(2) -K (1))
C*****xDETERMINE EMITTER SHEATHX****x
JNET= (I*KN*1.595769) / (SQRT (TAU (1) ) *NEB (1))
CALL SHEATH (JNET,ENR/NEB (1), TAU(1l),ECHI,PHIB,EALPHA, ENE)
C----=-FIND EMITTER (0+) DERIVATIVES FROM B.C.
IF (ECHI.LE.1E~5.0R.ECHI.GE.20) EFIX=1
ETETA=(TAU (1) ~1) *ENE*NEB (1) /KN-I* (ECHI-TAU (1) /2)
ETZ=ETETA/K(1)
EPCZ=(SQRT (PI/8/EALPHA) /LAMDAR/KN) *NEB (1) /MUI (1) -I/MUEA (1)
EN2= (EPCZ-NEB (1) * (ETZ+DTAUNDZ2) ) / (TAU (1) +TAUN(1))
C*****SOLVE COLLECTOR SHEATH '
CFLAG=0
CNE=0.0
U=1.0
GU=G (U, NEB (N) ’ TAU (N) ’ II KN)
DELU=0.05
DO 80 Il=1,50
DGDU= (G (U+DELU, NEB (N) , TAU(N) , I, KN) -GU) /DELU
DELTAU=~GU/DGDU
U=U+DELTAU
GU=G (U, NEB (N) , TAU(N) , I, KN)
IF (ABS(GU).LE.0.001) THEN
CCHI=U*TAU (N)
GOTO 85
ENDIF
80 CONTINUE
CCHI = 0.0
WRITE (*, 205)
IF (CHKDOT .GT. 1) WRITE(11,205)
C****DETERMINE DERIVATIVES AT COLLECTOR (1-) FROM B.C.
85 IF (CHKDOT .GT. 1)
&WRITE(11,206) EGRADA,ALPHA2,TAU(1),ENR/NEB(1),
&JINET,ECHI, PHIB,ENE, EALPHA, CCHI, CALPHA, IFLAG, RCODE
DPH = -CCHI/TAU(N)
IF (DPH.LT.0.0000001) DPH = 0.0000001
CALPHA= (1.0/TAU(N))*(3.14159265/2)*( (1.0 + ERF (SQRT (DPH)))
+ - (1./2.)*(1.0 + ERF(SQRT(4.0*DPH))) )**2 / ( EXP (-DPH}
+ - (1./4.)*EXP (-4.0*DPH) ) **2
LCCHI = 0.0
IF (CCHI.LT.0.0) THEN
LCCHI = CCHI
CCHI = 0.0
ENDIF
CTETA=~I* (CCHI-TAU(N)/2.0)
CT2=CTETA/K (N)
CDETA=ALQG (K (N) /K(N~1)) *D2/ (K (N) ~K (N-1))
NBCOA=TAU (1) +TAUN (1)
NBCOB=SQRT (PI/EALPHA/8.0) /LAMDAR/KN/MUI (1) -ENE*NEB (1) /K (1) *
+ (TAU(1)-1.0)-DTAUNDZ
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NBCOC=I*NEB (1) /K(1) * (ECHI-TAU(1)/2.0)~I/MUEA(1)

NBC1A=TAU (N) +TAUN (N)

NBC1B=~SQRT (PI/CALPHA/8.0) /LAMDAR/KN/MUI (N) ~CNE*NEB (N) /K (N) *
+ (TAU(N)=-1.0) +DTAUNDZ

NBC1C=~I*NEB (N) /K (N) * (CCHI-TAU (N) /2.0) -I/MUEA (N)

TBCOA=1.0

TBCOB=ENE*NEB (1) /KN+I/2.0

TBCOC=~ENE*NEB (1) /KN-I*ECHI

TBClA=-1.0

TBC1B=CNE*NEB (N) /KN-1/2.0

TBC1C=~CNE*NEB (N) /KN+I*CCHI

NEBA (0) = (NBCOA*LAMNEB) / (2.0*D2)

NEBB (0) =-LAMNEB*NBCOB

NEBC (0) =-NBCOA*LAMNEB/ (2.0*D2)

NEBV (0) *NBCOB* (1.0-LAMNEB) *NEB (1) +NBCOC-(1.0-LAMNEB) *
+ NBCOA* (NEB (2) -NEB(0) ) / (2.0*D2Z)

TAUA (0) =TBCOA*LAMTAU/ (2.0*DETAP)

TAUB (0) =-LAMTAU*TBCOB

TAUC (0) ==-TBCOA*LAMTAU/ (2. 0*DETAP)

TAUV(0) =TBCOB* (1.0-LAMTAU) *TAU (1) +TBCOC- (1.0-LAMTAU) *
+ TBCOA* (TAU(2) -TAU(0) )/ (2.0*DETAP)

NEBA (N+1) = (NBC1A*LAMNEB) / (2.0*D2)

NEBB (N+1) =-LAMNEB*NBC1B

NEBC (N+1) =-NBC1A*LAMNEB/ (2.0*D2) A

NEBV (N+1) =NBC1B* (1.0~LAMNEB) *NEB (N) +NBC1C~-(1.0-LAMNEB) *
+ NBC1A* (NEB (N+1) -NEB (N=1) )/ (2.0*D2)

TAUA (N+1) =TBC1lA*LAMTAU/ (2.0*CDETA)

TAUB (N+1) =-LAMTAU*TBC1B

TAUC (N+1) ==TBC1A*LAMTAU/ (2.0*CDETA)
© TAUV(N+1)=TBC1B* (1.0-LAMTAU) *TAU(N) +TBC1C- (1.0-LAMTAU) *
+ TBC1lA* (TAU(N+1) -TAU(N-1))/ (2.0*CDETA)

Cxx*#*INITIALIZE GAMMAP & QKP FOR LOOP
MURS=MUI (2) /MUEA (2) +MUI (1) /MUEA (1) * (1-2*D2* (

+ (0.5-RE) *ETZ/TAU(1) -0.5*DTAUNDZ/TAUN(1)))
GAMMAP=0.5* ( ( (MUI (1) +MUI (2))* (PC(1)-PC(0))
+ ) /DZ+I*MURS)

QKP= (TAU (1) -TAU(Q) ) /DETA
MUIS=MUI (1) +MUI (2)

DO 100 J=1,N
Commm= UPDATE FOR NEW J
GAMMAM=GAMMAP
QKM=QKP
DETA=DETAP
MUISOLD=MUIS
MURSOLD=MURS
IF (J.NE.N) THEN
DETAP=ALOG (K (J+1) /K (J)) *DZ/ (K (J+1) =K (J))
MUIS=MUI (J) +MUI (J+1)
ELSMURS-MUI(J)/MUEA(J)+MUI(J+1)/MUEA(J+1)
E
MURS=MURS+2*D2* (MUI (N) /MUEA (N)) * ((0.5-RE) *CTZ/TAU (N)
+ -0.5*DTAUNDZ/TAUN (N) )
ENDIF
Comwe- FIND AMBIPOLAR FLUX AT J+1/2
GAMMAP=(0.5* ( (MUIS* (PC(J+1) -PC(J)) ) /DZ+I*MURS)
S FIND MASS SOURCE AT J
A=CA/TAU(J) **4.5
NES2=NNB (J) *TAU (J) **1.5*EXP (CSAHA-EGNDB/TAU (J) )
D21B=F (7) * (1+4F (8) /TAU(J))
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D32B=F (2) *EXP (F (3) /TAU(J))
IB=A*NES2* (1+F (1) /NEB(J) )/ (1+D21B* (1+D32B/NEB (J) ) /NEB (J))
PO=1+(F(4) /NEB(J) ) * (1+F (5) /NEB(J) )/ (1+F (6) /NEB (J) )
NUE=NEB (J) *NEB (J) /NES2
MSOURCE (J) =NEB (J) *IB* (1-P0*NUE)
IF (IDEN.EQ.1) MSOURCE (J)=NEB (J) *A*NES2
NEBDOT (J) =RMUR* (GAMMAP -GAMMAM) /DZ+MSOURCE (J)
NA (J) =RMUR*MUIS* (TAU (J+1) +TAUN(J+1)) /2.0/DZ**2
NB (J) =RMUR* (MUIS+MUISOLD) * (TAU (J) +TAUN(J) ) /2.0/DZ**2
NC (J) =RMUR*MUISOLD* (TAU (J~1) +TAUN (J-1))/2.0/DZ**2
ND (J) =I* (MURS-MURSOLD) *RMUR/D2/2.0
+ +NEB (J) *IB* (1.0+SQRT (PO/NES2) *NEB (J) )
NS (J)=IB* (1.0-PO*NUE)
NS (J) ==NEB (J) *IB* (1.0+SQRT (PO/NES2) *NEB (J) ) *SQRT (P0/NES2)
IF (IDEN.EQ.1l) NS(J)=A*NES2
CBA (J) =-DT*NA (J) *LAMNER
NEBB (J) =1.0+DT*NB (J) *LAMNEB-DT*NS (J) *LAMNEB
NEBC (J) ==DT*NC (J) *LAMNEB
NEBV (J) =NEB (J) +DT*NA (J) * (1. 0~LAMNEB) *NEB (J+1) -DT*NB (J) *
+ (1.0-LAMNEB) *NEB (J) +DT*NC (J) * (1.0-LAMNEB) *NEB (J-1) +
+ DT*ND (J) +DT*NS (J) * (1.0~ LAMNEB)*NEB(J)
KDE=K (J) * (DETA+DETAP) /2
QKP= (TAU (J+1) -TAU (J) ) /DETAP
CONVECT=-(1.5) *I* (DETA*QKP+DETAP*QKM) / (2*KDE)
SIGMA=NEB (J) *MUEA (J)
POHMIC=1* (I/SIGMA+TAU (J) * (NEB (J+1) -NEB (J-1))
+ / (2*DZ*NEB(J)))
PBP= (F (9) *NNR/NR) *EXP (-F (10) /TAU (J) )
PB=(F (11) *NNR/NR) *EXP (-F (12) /TAU (J) )
CV{(J)=1.5*NEB(J) +NNB (J) * (F (10) *PBP+F (12) *PB*NUE)

+ / (TAU(J) *TAU (J) )
ESOURCE (J) =-ELOSSB*MSOURCE (J)
+ =NNB (J) *PB* (2*NUE*NEBDOT (J) /NEB (J) )
TAUDOT(J)'}(QKP'QKM)/KDE+CONVECT+POHMIC+ESOURCE(J))
+ Cv(J)

TA(J)=1.0/ (DETAP*KDE*CV (J))
TB(J)=(1.0/DETAP+1.0/DETA) /KDE/CV (J)
TC(J)=1.0/DETA/KDE/CV(J)
TS (J) = (CONVECT+POHMIC+ESQURCE (J) ) /CV (J)
TAUA (J) =-DT*LAMTAU*TA (J)
TAUB (J) =1.0+DT*LAMTAU*TB (J)
TAUC (J) ==DT*LAMTAU*TC (J)
TAUV (J) =TAU (J) +DT* (1.0-LAMTAU) *TA (J) *TAU (J+1)
+ " =DT*(1.0-LAMTAU) *TB (J) *TAU (J)
+ +DT* (1.0-LAMTAU) *TC (J) *TAU (J-1)
+ +TS (J) *DT
IF (CHKDOT.EQ.3) WRITE(9,201) J,NEB(J),J,TAU(J),
+ J,MSOURCE (J) ,J,PB,PBP,A,D218B,D32B,P0, IB,
+ NUE,NESZ2, QKP, GAMMAP DETAP MURS
100 CONTINUE
NEBC (0) =NEBC (0) ~NEBC (1) *NEBA (0) /NEBA (1)
NEBB (0) =NEBB (0) ~-NEBB (1) *NEBA (0) /NEBA (1)
NEBV (Q) =NEBV (0) ~NEBV (1) *NEBA (0) /NEBA (1)
NEBA (0) =NEBB (0)
NEBB (0) =NEBC (0)
NEBA (N+1) =NEBA (N+1) ~NEBA (N) *NEBC (N+1) /NEBC (N)
NEBB (N+1) =NEBB (N+1) -NEBB (N) *NEBC (N+1) /NEBC (N)
NEBV (N+1) =NEBV (N+1) ~-NEBV (N) *NEBC (N+1) /NEBC (N)
NEBC (N+1)=NEBB (N+1)
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110

120

130

140

150

160

170

c
201

202
203
204
205
206

NEBB (N+1) =NEBA (N+1)
TAUC (0) =TAUC (0) ~TAUC (1) *TAUA (0) /TAUA (1) .
TAUB (0) =TAUB (0) ~TAUB (1) *TAUA (0) /TAUA (1)
TAUV (0) =TAUV (0) =TAUV (1) *TAUA (0) /TAUA (1)
TAUA (0) =TAUB(0)
TAUB (0) =TAUC (0)
TAUA (N+1) =TAUA (N+1) =TAUA (N) *TAUC (N+1) / TAUC (N)
TAUB (N+1) =TAUB (N+1) -TAUB (N) *TAUC (N+1) / TAUC (N)
TAUV (N+1) =TAUV (N+1) ~TAUV (N) *TAUC (N+1) /TAUC (N)
TAUC (N+1) =TAUB (N+1)
TAUB (N+1) =TAUA (N+1)
ALPHA (0) =-NEBA (0) /NEBB (0)
DO 110 I1=1,N
ALPHA (I1) =-NEBA(I1) / (NEBC (I1) *ALPHA (I1-1) +NEBB(I1))
CONTINUE
ALPHA (N+1)=0.0
BETA (0) =NEBV (0) /NEBB (0)
DO 120 Il=1,N+1
BETA (I1)=(NEBV(I1)-NEBC (I1) *BETA(I1- 1))/ (NEBC(I1)
+ *ALPHA (I1-1) +NEBB (I1))
CONTINUE 4
NEBU (N+1) =BETA (N+1)
DO 130 Il=N,0,-1
NEBU (I1)=ALPHA (I1) *NEBU(I1+1)+BETA(I1)
CONTINUE
ALPHA (0) =-TAUA (0) /TAUB (0)
DO 140 Il1=1,N
ALPHA (I1)=-TAUA(I1)/ (TAUC (I1)*ALPHA (I1-1)+TAUB (I1))
CONTINUE
ALPHA (N+1)=0.0
BETA (0) =TAUV (0) /TAUB (0)
DO 150 Il=1, (N+1)
BETA(I1)=(TAUV(I1)-TAUC(I1)*BETA(I1-1))/ (TAUC(I1)
+ *ALPHA (I1-1) +TAUB (I1))
CONTINUE -
TAUU (N+1) =BETA (N+1)
DO 160 I1=N,0,-1
TAUU (I1)=ALPHA (I1) *TAUY (I1+1) +BETA(I1)
CONTINUE
DO 170 I1=0,N+1
TAUDOT (I1)=(TAUU(I1)-TAU(I1)) /DT
NEBDOT (I1)=(NEBU (I1) -NEB(I1)) /DT
CONTINUE
IF (CHKDOT.EQ.3) THEN
WRITE (9,202) (I1,NEBDOT(I1),Il,TAUDOT(I1),I1=0,N+1)
WRITE (9,203) (I1,ALPHA(I1),I1,BETA(I1),I1=0,N+1)
WRITE (9,204) (I1,NEBU(I1),Il,TAUU(I1),I1=0,N+1)
ENDIF
RETURN

FORMAT ('NEB(’,I2,’)=’,F8.3,’ TAU(’,12,’')=’,F8.3,

&’ MSOURCE(’,I2,’)=’,F8.3/'J=',12,’ PB=’,F8.3,

&’ PBP=/,F8.3/'A=’,F8.3,’ D21B=',F8.3,’ D32B=’,F8.3/
&’'P0=',F8.3,’ 1IB=',F8.3/'NUE=',F8.3,’ NES2=’,F8.3/
&'QKP=’,F8.3,” GAMMAP=',F8.3/'DETAP=',F8.3,’ MURS=’,F8.3)
FORMAT (' NEBDOT(’,I2,’)=',F8.3,’ TAUDOT(’,I2,’)=',F8.3)
FORMAT (' ALPHA(’,12,’)=’,F8.3,’ BETA(’,12,’)=’,F8.3)
FORMAT (NEBU(’,12,’)=’,F8.3,’ TAUU(',I2,’)=’,F8.3)

FORMAT (//2X,’ COLLECTOR SHEATH FAILED TO CONVERGE’,//)
FORMAT (/1X, 'EGRADA=' ,F7.3, 3X,’ ALPHA2=' ,F7.3/
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&1X,’RLE=’ ,F5.2,3X,’EMISS=’ ,F9.1,3X,’JNET=’ ,F7.4/
&1X,’'ECHI=' ,F7.3,3X,PHIB=’ ,F7.3,1X,’ENE=’,F10.3, 3X,
&' EALPHA=’ ,F7.4/1X,'CCHI=’ ,F7.3,3X,’'CALPHA=' ,F7.4/1X,
&’ IFLAG=',11,3X,’RCODE=’,6Al)

END

c**i******tt*****ﬁ**************************t*****************t*******t****

FUNCTION G (UX,NEB, TAU, I,KN)
CARRRARRRRRRRRR KRR KRR IR AR AR RN AR RN AR R IR R RR KRR R AR KRR AR R AR RN R KR KRR KRR
REAL UX, NEB, TAU, I, KN, SQX, GX
DOUBLE PRECISION ERF
IF (UX.LE.0.Q) THEN
SQx=0.0
ELSE
SQX=SQRT (UX)
ENDIF
Cc G=UX*LOG(1.0+ERF (SQX)) - LOG(NEB*SQRT (TAU) /I/KN/2.0)
G=UX ~ LOG(NEB*SQRT (TAU) /I/KN/2.0)
RETURN
END
CRERRARRARRR KRR AR RERR AR IR KR I KRR R IR AR RRRRR KRR KRR KRR KKK KRk Kk

FUNCTION ERF (X)

L ey e T ™
DOUBLE PRECISION X1,SUM,ERF,ERFX,P(3,6),Q(3,6),PI,TSUM1, TSUM2
INTEGER IPOWER(3)

DATA IPOWER/2,1,-2/
PI=3.1415926535898
TSUM1=0.0
TSUM2=0.0Q
X1=X
IF (X1 .LT. 0.0) Xl=-X1
IF (X1 .GT. 5.93) THEN
ERFX=1.0
GOTO 1240
END IF
IF (X1 .EQ. 0.0) THEN
ERF=0.0
GOTO 1245
ELSE
IFLAG=]
END IF
IF (X1 .LE. 4.0 .AND. X1 .GE. 0.47) IFLAG=2
IF (X1 .GT. 4.0) IFLAG=3
DO 1205 J=1,6
TSUM1=TSUM1 + P(IFLAG,J) * (X1**(IPOWER(IFLAG)*(J-1)))
TSUM2=TSUM2 + Q(IFLAG,J) * (X1**(IPOWER(IFLAG)*(J-1)))
1205 CONTINUE
SUM=TSUM1/TSUM2
GOTO (1210,1220,1230),IFLAG
1210 ERFX=X1*SUM
GOTO 1240
1220 ERFX=1.0 - DEXP (-X1*X1l) *SUM
GOTO 1240
1230 ERFX=1.0 - DEXP (~X1*X1)/X1*(1.0/DSQRT(PI)+(1.0/(X1*X1)*SUM))
1240 ERF=ERFX
IF (X .LT. 0.0) ERF=-ERFX
1245 RETURN

CARERRKRXXRRRRNX*D (TFLAG, J) *****xQ (IFLAG, J) ***kk*

DATA P(1,1)/3.20937758913847D+03/,P(1,2)/3.774852376853D+02/
DATA P(1,3)/1.1386415415105D+02/,P(1,4)/3.16112374387057/
DATA P(1,5)/1.85777706184603D-01/,P(1,6)/0.0/
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DATA Q(1,1)/2.84423683343917D+03/,Q(1,2)/1.2826165077372D+03/
DATA Q(1,3)/2.44024637934444D+02/,Q(1,4)/2.36012909523441D+01/
DATA Q(1,5)/1.0/,0(1,6)/0.0/,P(2,1)/2.2898992851659D+01/

DATA P(2,2)/2.6094746956075D+01/,P(2,3)/1.4571898596926D+01/
DATA P(2,4)/4.2677201070898/,P(2,5)/5.6437160686381D-01/

DATA P(2,6)/-6.0858151959688D-06/,Q(2,1)/2.2898985749891D+01/
DATA Q(2,2)/5.1933570687552D+01/,Q(2,3)/5.0273202863803D+01/
DATA Q(2,4)/2.6288795758761D+01/,Q(2,5)/7.5688482293618/

DATA Q(2,6)/1.0/,P(3,1)/-6.58749161529838D-04/

DATA P(3,2)/-1.60837851487423D-02/,P(3,3)/~-1.2578172611123D-01/
DATA P(3,4)/-3.60344899949804D-01/,P(3,5)/-3.05326634961232D~-01/
DATA P(3,6)/-~1.63153871373021D-02/,Q(3,1)/2.3352049762687D-03/
DATA Q(3,2)/6.05183413124413D-02/,Q(3,3)/5.27905102951428D-01/
DATA Q(3,4)/1.87295284992346/,Q(3,5)/2.56852019228982/,Q(3,6)/1/
END
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CALPHA=0.5
DO 10 Il=0,N+l1
NEB(Il)=I1
NEBCAL(Il)=(NEB(I1l)-1)/(N-1)
NEB (I1)=4,.0* (KN+NEBCAL(Il) * (1-NEBCAL(I1l)))
TAU(I1)=2700/TE
10 CONTINUE
ENDIF
Cx*x**MISCELANEQUS DEFAULTS
ARECN=0.31
EGNDB=3.896/8.609E-05/TE
ELOSSB=EGNDB
SN=DELTAT* (N-1) **2*3*LAMDAR*SMR* (BN+CN)
ST=DELTAT* (N-1) **2*0,667* (RE+2) *2** (RE+0.5) * (BT+CT) /FYEN
Cr*x* *NONDIMENSIONALIZE CURRENT AND CALCULATE RICHARDSON EMISSION
VALUE=EXP (-11600.0*EWF/TE)
ENR=(7.676E+14* (TE) **1,.5*VALUE) /NR
I=J / (KN*NR*(3.1265322E~13) *SQRT (TE))
JRIC=120.0*TE*TE* (EXP (-11600.0*EWF/TE) )
Cx***x*QUTPUT INITIALIZATION DATA TO PRNTOUT.DAT
WRITE (9,155) TE,TC,EWF,CWF,PN,D,J,CHKDOT,OFILE,N,
& JRIC,NR, TCHAR, I, ENR, KN, SMR, LAMDAR,
& NSTEPS, T2,DELTAT,DTP, LS
IF (CHKDOT.GT.1l) THEN
WRITE(9,160) ECHI,ENE,EALPHA,CCHI,CNE,CALPHA, AN,AT,

& BN, BT,CN,CT, SN, ST, LAMNEB, LAMTAU, ELOSSB,

& ARECN, EGNDB, IDEN, FYEN, RE o
WRITE (9,159) (I1,NEB(I1),Il1,TAU(I1l),I1l=1,N)

ENDIF

WRITE(9,161)

Cx**x*CHECK FOR UNREAL CURRENT CONDITION J/JR > 1.0
IF (2*KN*I/ENR .GE. 1.0) THEN

WRITE (*,153)
STOP
ENDIF
RETURN
c
c ----------------------------------------------------------------------
150 FORMAT(IX"***i********t********t*******************’/
&lx"t**** *t***'/
ELX,’ *rran TEC  START L LLY
E1X, ' *xxxx kxxkx! /

ELX, /AR RRRKARRRRRRRRRRRRRARR KRR KKK RKRKKRARRR! [ [ /)
151 FORMAT(F8.1/F8.1/F6.3/F6.3/F6.3/F6.3/F7.2/F5.2/F6.1/
&I1/I1/1I3/1I3/13)
152 FORMAT (F9.4/F9.4/F8.3/F8.3/F9.4/F9.4/13)
153 FORMAT (1X,’ ***SMALL J IS TOO LARGE...CASE TERMINATED***’//)
154 FORMAT (2F8.3)
155 FORMAT (12X, TEC INITIAL DATA SUMMARY'/
&1X,/ ~~==== ottt ittt bttt b b DL D DL DD DBt P r//
&1X,’PHYSICAL OPERATING CONDITIONS=-~=--- "1/
&1X,’ EMITTER TEMPERATURE (TE)=' ,F8.1,’ KELVIN’/
&€1X,’ COLLECTOR TEMPERATURE (TC)=',F8.1,’ KELVIN’/
¢€1X,’ EMITTER WORK FUNCTION (EWF)= ‘,F6.3,’ EV//
&1X,’COLLECTOR WORK FUNCTION (CwWF)= ',F6.3,’ EV'/

&l1X,’ CONVERTOR PRESSURE (PN)= ’,F6.3,’ TORR’/
&l1X,’ GAP THICKNESS (D)= ' ,F6.3,’ MM’/
&lX,’ OPERATING CURRENT (J)=',F7.3,’ AMPS/CM~2'//
&lXx,’ TEC FUNCTION SETTINGS=-~=-~ r//
&1X%,’ DIAGNOSTIC LEVEL (CHKDOT)= /,Il/
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c DOS FILE PRED3.FOR

ct*******tt************************************************************

SUBROUTINE INITIAL (TE, TC,EWF,CWF,PN,NSTEPS,DTP, T2,AN,AT,
&CN, CT,BN, BT, TCHAR, SMR, ARECN, DELTAT, SN, ST, TAU, NEB, LS, pC)
CRRRRR KA IR KRR R R RK AR KKK RN KRR AR R AR IR AR R R IR A KKK KKK RI KA KKK KKK

REAL CA,CSAHA,CNE,ENE,ECHI,CCHI,EALPHA, CALPHA, LAMNEB, LAMTAU

REAL DT,DTAUNDZ,DTP, T2, AN,AT,CN,CT,BN,BT,RE, KN, TCHAR, PN

REAL SMR, LAMDAR,NR, TE, TC, ENR, I,ARECN, EGNDB, ELOSSB,MUI (0:150)

REAL TAU(0:150),NEB(0:150) ,DELTAT,SN,ST,PI,TAUN(0:150),NNB(0:150)
REAL NEBCAL(0:150),FYEN, LAMDAE, LAMDAI, EWF, CWF, J, RMUR, LCCHI

REAL ESOURCE (0:150),CV,JRIC,VALUE, PHISDAT (154, 6) ,PHIBDAT (21, 6)
INTEGER N, IDEN,CHKDOT,OFILE,EFIX,CFIX,NSTEPS,LS,pcC

c
COMMON /PRED/ CA,CSAHA,DT,DTAUNDZ,DZ,EGNDB,ELOSSB, ENR, I, IDEN, KN
COMMON /PRED/ LAMDAR, LAMNEB, LAMTAU,MUI, N, NNB, NNR,NR,PI,RE, RMUR
COMMON /PRED/ TAUN,EFIX,CFIX,CHKDOT,FYEN,ENE,ECHI,CCHI,CNE
COMMON /PRED/ EALPHA,CALPHA,CV,ESOURCE, LCCHI
COMMON /XSHEATH/ PHISDAT,PHIBDAT

0!

WRITE(*,150)
Cx****READ FILE INDATA.DAT
READ (2,151) TE, TC, EWF,CWF,PN,D,J,DTP,T2,CHKDOT,OFILE,pPc,N,LS
REWIND (2)
CLOSE(2)
Cx****xREAD FILE PRECOR.DAT
c CALL DATAINT
C***xx*SET NUMERICAL PARAMETERS, RECOMPILATION REQUIRED TO CHANGE
AN=(0.5
AT=0.5
CN=0.5
CT=0.5
BN=1.0-CN
BT=1.0-CN
PI=3.1415926
IDEN=Q
RE=0.0
FYEN=1.0
NR=1.0E14
DELTAT=DTP/NSTEPS
LAMNEB=1.0
LAMTAU=1.0
C*x**xx*SET TRANSPORT PROPERTIES
LAMDAE=1,0/32.3/PN
LAMDAI=1.0/96.6/PN
LAMDAR=LAMDAI/LAMDAE
KN=LAMDAE/D
TCHAR=D/ (KN*3,75% (TE**.,5))
SMR=1.0/492.2
C*»*x*EXECUTE OFILE SELECTION SETTING
IF (OFILE .EQ. 1) THEN
READ (8,152) ENE,CNE,ECHI,CCHI,EALPHA,CALPHA,N
READ (8,154) (NEB(I1l),TAU(I1),I1=0,N+1)
REWIND (8)
ELSE
ENE=0.8
CNE=0.8
ECHI=3.0
CCHI=3.0
EALPHA=0.5
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&1X,’ RESTART SEQUENCE (OFILE)= ',Il/

&1X,’ POINT DENSITY (N)y=",13//
&1X,’PHYSICAL PARAMETERS EVALUATED~--=-- //

&1X,’ RICHARDSON CURRENT (JRIC)=',E9.2,’ AMPS/CM~2'/
&1X,’ REFERENCE DENSITY (NR)=',E9.2," 1/CM*3'/
&1X,’ CHARACTERISTIC TIME (TCHAR)= ' ,F7.4,’ SECS*E-06'/
&1X,’ NONDIM CURRENT ()= ',F7.4/

&1X,’ NONDIM EMISSION (ENR)= ' ,F8.3,’ (NRIC/NR)’/
&1X,’ KNUDSEN NUMBER (KN)= '’ ,F7.4/

&1X,’ SQRT (MASS RATIO) (SMR)= '’ ,F7.4/

&1X, 'MEAN FREE PATH RATIO (LAMDAR)= ' ,F7.4//

&1X,’TIME SETTINGS-=--- ' /4X, 'NSTEPS=',13/

&4Xx,’ T2=' ,F6.1/4X,’DELTAT=’ ,F6.3/4X,"’ DTP=’' ,F6.3/
&4X,’ LSF=',13)

159 FORMAT(4X"NEB('112")="F8-3,' TAU(',IZ,')=',F8.3)
160 FORMAT(//1X,’ADVANCED DIAGNOSTIC OUTPUT-=-=- ry/

&4X,’ECHI=' ,F5.1,’ ENE=',F7.4,’ EALPHA='’,F7.4/
&4X,’CCHI=',F5.1,'’ CNE=’,F7.4,' CALPHA=',F7.4/
&4X,'AN=’,F7.4,’ AT=',F7.4/4X,’'BN=’,F7.4,’ BT=’,F7.4/
&4X,’'CN=',F7.4,' CT=',F7.4/4X,’SN=',F7.4,' ST=’,F7.4/
&4X,’'LAMNEB= ',F5.2/4X,’ LAMTAU=’ ,F5.2/4X,'ELOSSB= ' ,F6.3/
&4X,’ARECN= ’ ,F6.3/4X,'EGNDB= ’,F6.3,/4X,’ IDEN=’,11/
&4X,’FYEN= ' ,F5.2/4X,’RE= ',F5.2//

&1X,’ STARTUP DENSITY AND TEMPERATURE RATIOS----- ’)
161 FORMAT(/1X,’ =~==—====em—mee—cce—ce—e;c———a——a——— ',

P . ’)

END
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DOS FILE PRED4.FOR

SUBROUTINE SHEATH (JNET, ENR, TAU,ECHI, PHIB, EALPHA, ENE)
REAL ENE,ECHI,ENR, TAU, PHIB, EALPHA, JNET, A, S, B, DPH
A=1.1485
B=1.169
S=.1
ECHI=( ((JNET-A) +SQRT ( (JNET~A) **2+4*S*B) ) / (2%5) ) **2
IF (ECHI.LT.0.0) ECHI = 0.0 .
ENE=(SQRT (3.14159265/2) *JNET*SQRT (TAU) ) + s
+ (1/EXP (ECHI/TAU)) C
PHIB=ALOG (ABS (ENR/ENE) )
IF (PHIB.LE.0.0) THEN
PHIB = 0.0
ENE = ENR
ECHI = ~ TAU*ALOG(ENE - (SQRT(3.14159265/2) *JNET*SQRT (TAU)))
ENDIF
DPH = (PHIB - ECHI)/TAU L
IF (DPH.LT.0.0000001) DPH = 0.0000001 -

EALPHA=(1.0/TAU) * (3.14159265/2)*( (1.0 + ERF (SQRT (DPH))) * 3
+ - (1./2.)*(1.0 + ERF(SQRT(4.0*DPH))) )**2 / ( EXP (~DPH) o
+ = (1./4.)*EXP(-4.0*DPH) ) *x*2 .-

RETURN

END
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